
JOURNAL OF FORMALIZED MATHEMATICS

Volume12, Released 2000, Published 2003

Inst. of Computer Science, Univ. of Białystok

Standard Ordering of Instruction Locations

Andrzej Trybulec
University of Białystok

Piotr Rudnicki
University of Alberta

Artur Korniłowicz
University of Białystok

MML Identifier: AMISTD_1.

WWW: http://mizar.org/JFM/Vol12/amistd_1.html

The articles [22], [11], [27], [28], [19], [4], [24], [2], [23], [7], [8], [10], [9], [21], [1], [5], [6], [26],
[12], [15], [14], [13], [17], [25], [20], [3], [18], and [16] provide the notation and terminology for
this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules:x, X are sets,D is a non empty set,n is a natural
number, andz is a natural number.

Next we state two propositions:

(1) For every real numberr holds max{r}= r.

(2) max{n}= n.

Let us observe that there exists a finite sequence which is non trivial.
Next we state the proposition

(3) For every trivial finite sequencef of elements ofD holds f is empty or there exists an
elementx of D such thatf = 〈x〉.

Let us note that every binary relation has non empty elements.
We now state the proposition

(4) idX is bijective.

Let A be a finite set and letB be a set. One can verify thatA 7−→ B is finite.
Let x, y be sets. Observe thatx7−→. y is trivial.

2. RESTRICTEDCONCATENATION

Let f1 be a non empty finite sequence and letf2 be a finite sequence. Observe thatf1 aa f2 is non
empty.

Next we state several propositions:

(5) Let f1 be a non empty finite sequence of elements ofD and f2 be a finite sequence of
elements ofD. Then( f1 aa f2)1 = ( f1)1.

(6) Let f1 be a finite sequence of elements ofD and f2 be a non trivial finite sequence of
elements ofD. Then( f1 aa f2)len( f1aa f2) = ( f2)len f2.
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(7) For every finite sequencef holds f aa /0 = f .

(8) For every finite sequencef holds f aa 〈x〉= f .

(9) For all finite sequencesf1, f2 of elements ofD such that 1≤ n andn≤ len f1 holds( f1 a
a f2)n = ( f1)n.

(10) For all finite sequencesf1, f2 of elements ofD such that 1≤ n andn < len f2 holds( f1 a
a f2)len f1+n = ( f2)n+1.

3. AMI -STRUCT

For simplicity, we adopt the following convention:N denotes a set with non empty elements,S
denotes an IC-Ins-separated definite non empty non void AMI overN, i denotes an element of the
instructions ofS, l , l1, l2, l3 denote instruction-locations ofS, ands denotes a state ofS.

The following proposition is true

(11) LetSbe a definite non empty non void AMI overN, I be an element of the instructions of
S, ands be a state ofS. Thens+·((the instruction locations ofS) 7−→ I) is a state ofS.

Let N be a set and letS be an AMI overN. One can check that every finite partial state ofS
which is empty is also programmed.

Let N be a set and letSbe an AMI overN. One can verify that there exists a finite partial state
of Swhich is empty.

Let N be a set with non empty elements and letSbe an IC-Ins-separated definite non empty non
void AMI over N. Note that there exists a finite partial state ofS which is non empty, trivial, and
programmed.

Let N be a set with non empty elements, letSbe a non void AMI overN, let i be an element of
the instructions ofS, and letsbe a state ofS. Observe that (the execution ofS)(i)(s) is function-like
and relation-like.

Let N be a set with non empty elements and letS be a steady-programmed IC-Ins-separated
definite non empty non void AMI overN. One can verify that there exists a finite partial state ofS
which is non empty, trivial, autonomic, and programmed.

Next we state two propositions:

(12) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
i1 be an instruction-location ofS, andI be an element of the instructions ofS. Theni1 7−→. I is
autonomic.

(13) Every steady-programmed IC-Ins-separated definite non empty non void AMI overN is
programmable.

Let N be a set with non empty elements. Observe that every IC-Ins-separated definite non empty
non void AMI overN which is steady-programmed is also programmable.

Let N be a set with non empty elements, letSbe a non empty non void AMI overN, and letT be
an instruction type ofS. We say thatT is jump-only if and only if the condition (Def. 3) is satisfied.

(Def. 3)1 Let s be a state ofS, o be an object ofS, andI be an instruction ofS. If InsCode(I) = T
ando 6= ICS, then(Exec(I ,s))(o) = s(o).

Let N be a set with non empty elements, letSbe a non empty non void AMI overN, and letI
be an instruction ofS. We say thatI is jump-only if and only if:

(Def. 4) InsCode(I) is jump-only.

Let us considerN, S, l and leti be an element of the instructions ofS. The functor NIC(i, l)
yielding a subset of the instruction locations ofS is defined as follows:

1 The definitions (Def. 1) and (Def. 2) have been removed.
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(Def. 5) NIC(i, l) = {ICFollowing(s) : IC s = l ∧ s(l) = i}.

Let N be a set with non empty elements, letSbe a realistic IC-Ins-separated definite non empty
non void AMI overN, let i be an element of the instructions ofS, and letl be an instruction-location
of S. Observe that NIC(i, l) is non empty.

Let us considerN, S, i. The functor JUMP(i) yields a subset of the instruction locations ofSand
is defined as follows:

(Def. 6) JUMP(i) =
⋂
{NIC(i, l)}.

Let us considerN, S, l . The functor SUCC(l) yielding a subset of the instruction locations ofS
is defined by:

(Def. 7) SUCC(l) =
⋃
{NIC(i, l)\JUMP(i)}.

Next we state two propositions:

(14) Let i be an element of the instructions ofS. Suppose the instruction locations ofSare non
trivial and for every instruction-locationl of Sholds NIC(i, l) = {l}. Then JUMP(i) is empty.

(15) Let S be a realistic IC-Ins-separated definite non empty non void AMI overN, i1 be an
instruction-location ofS, andi be an instruction ofS. If i is halting, then NIC(i, i1) = {i1}.

4. ORDERING OFINSTRUCTIONLOCATIONS

Let us considerN, S, l1, l2. The predicatel1 ≤ l2 is defined by the condition (Def. 8).

(Def. 8) There exists a non empty finite sequencef of elements of the instruction locations ofS
such thatf1 = l1 and flen f = l2 and for everyn such that 1≤ n andn < len f holds fn+1 ∈
SUCC( fn).

Let us note that the predicatel1 ≤ l2 is reflexive.
The following proposition is true

(16) If l1 ≤ l2 andl2 ≤ l3, thenl1 ≤ l3.

Let us considerN, S. We say thatS is InsLoc-antisymmetric if and only if:

(Def. 9) For alll1, l2 such thatl1 ≤ l2 andl2 ≤ l1 holdsl1 = l2.

Let us considerN, S. We say thatS is standard if and only if the condition (Def. 10) is satisfied.

(Def. 10) There exists a functionf from N into the instruction locations ofSsuch thatf is bijective
and for all natural numbersm, n holdsm≤ n iff f (m)≤ f (n).

We now state three propositions:

(17) Let f1, f2 be functions fromN into the instruction locations ofS. Suppose that

(i) f1 is bijective,

(ii) for all natural numbersm, n holdsm≤ n iff f1(m)≤ f1(n),

(iii) f2 is bijective, and

(iv) for all natural numbersm, n holdsm≤ n iff f2(m)≤ f2(n).

Then f1 = f2.

(18) Let f be a function fromN into the instruction locations ofS. Supposef is bijective. Then
the following statements are equivalent

(i) for all natural numbersm, n holdsm≤ n iff f (m)≤ f (n),

(ii) for every natural numberk holds f (k+1) ∈ SUCC( f (k)) and for every natural numberj
such thatf ( j) ∈ SUCC( f (k)) holdsk≤ j.

(19) S is standard if and only if there exists a functionf from N into the instruction locations of
Ssuch thatf is bijective and for every natural numberk holds f (k+ 1) ∈ SUCC( f (k)) and
for every natural numberj such thatf ( j) ∈ SUCC( f (k)) holdsk≤ j.
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5. STANDARD TRIVIAL COMPUTER

Let N be a set with non empty elements. The functor STC(N) yielding a strict AMI overN is
defined by the conditions (Def. 11).

(Def. 11) The carrier of STC(N) = N∪{N} and the instruction counter of STC(N) = N and the in-
struction locations of STC(N) = N and the instruction codes of STC(N) = {0,1} and the
instructions of STC(N) = {〈〈0, 0〉〉,〈〈1, 0〉〉} and the object kind of STC(N) = (N 7−→ {〈〈1,
0〉〉,〈〈0, 0〉〉})+·({N} 7−→ N) and there exists a functionf from ∏ (the object kind of STC(N))
into ∏ (the object kind of STC(N)) such that for every elements of ∏ (the object kind
of STC(N)) holds f (s) = s+·({N} 7−→ succs(N)) and the execution of STC(N) = ({〈〈1,
0〉〉} 7−→ f )+·({〈〈0, 0〉〉} 7−→ id∏ (the object kind of STC(N))).

Let N be a set with non empty elements. Note that the instruction locations of STC(N) is infinite.
Let N be a set with non empty elements. One can verify that STC(N) is non empty and non

void.
Let N be a set with non empty elements. One can check that STC(N) is IC-Ins-separated,

definite, realistic, steady-programmed, and data-oriented.
One can prove the following propositions:

(20) For every instructioni of STC(N) such that InsCode(i) = 0 holdsi is halting.

(21) For every instructioni of STC(N) such that InsCode(i) = 1 holdsi is non halting.

(22) For every elementi of the instructions of STC(N) holds InsCode(i) = 1 or InsCode(i) = 0.

(23) Every instruction of STC(N) is jump-only.

(24) For every instruction-locationl of STC(N) such thatl = z holds SUCC(l) = {z,z+1}.

Let N be a set with non empty elements. One can verify that STC(N) is standard.
Let N be a set with non empty elements. One can check that STC(N) is halting.
Let N be a set with non empty elements. Note that there exists an IC-Ins-separated definite

non empty non void AMI overN which is standard, halting, realistic, steady-programmed, and
programmable.

In the sequelT denotes a standard IC-Ins-separated definite non empty non void AMI overN.
Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty

non void AMI overN, and letk be a natural number. The functor ilS(k) yielding an instruction-
location ofS is defined by the condition (Def. 12).

(Def. 12) There exists a functionf from N into the instruction locations ofSsuch thatf is bijective
and for all natural numbersm, n holdsm≤ n iff f (m)≤ f (n) and ilS(k) = f (k).

We now state two propositions:

(25) For all natural numbersk1, k2 such that ilT(k1) = ilT(k2) holdsk1 = k2.

(26) For every instruction-locationl of T there exists a natural numberk such thatl = ilT(k).

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letl be an instruction-location ofS. The functor locnum(l) yielding a
natural number is defined by:

(Def. 13) ilS(locnum(l)) = l .

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letl be an instruction-location ofS. Then locnum(l) is a natural number.

Next we state four propositions:

(27) For all instruction-locationsl1, l2 of T such that locnum(l1) = locnum(l2) holdsl1 = l2.
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(28) For all natural numbersk1, k2 holds ilT(k1)≤ ilT(k2) iff k1 ≤ k2.

(29) For all instruction-locationsl1, l2 of T holds locnum(l1)≤ locnum(l2) iff l1 ≤ l2.

(30) If S is standard, thenS is InsLoc-antisymmetric.

Let us considerN. Note that every IC-Ins-separated definite non empty non void AMI overN
which is standard is also InsLoc-antisymmetric.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, let f be an instruction-location ofS, and letk be a natural number. The
functor f +k yields an instruction-location ofSand is defined by:

(Def. 14) f +k = ilS(locnum( f )+k).

Next we state three propositions:

(31) For every instruction-locationf of T holds f +0 = f .

(32) For all instruction-locationsf , g of T such thatf +z= g+z holds f = g.

(33) For every instruction-locationf of T holds locnum( f )+z= locnum( f +z).

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and let f be an instruction-location ofS. The functor NextLocf yielding an
instruction-location ofS is defined by:

(Def. 15) NextLocf = f +1.

The following propositions are true:

(34) For every instruction-locationf of T holds NextLocf = ilT(locnum( f )+1).

(35) For every instruction-locationf of T holds f 6= NextLoc f .

(36) For all instruction-locationsf , g of T such that NextLocf = NextLocg holds f = g.

(37) ilSTC(N)(z) = z.

(38) For every instructioni of STC(N) and for every statesof STC(N) such that InsCode(i) = 1
holds(Exec(i,s))(ICSTC(N)) = NextLocIC s.

(39) Let l be an instruction-location of STC(N) and i be an element of the instructions of
STC(N). If InsCode(i) = 1, then NIC(i, l) = {NextLocl}.

(40) For every instruction-locationl of STC(N) holds SUCC(l) = {l ,NextLocl}.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and leti be an instruction ofS. We say thati is sequential if and only if:

(Def. 16) For every states of Sholds(Exec(i,s))(ICS) = NextLocIC s.

Next we state two propositions:

(41) LetSbe a standard realistic IC-Ins-separated definite non empty non void AMI overN, i1
be an instruction-location ofS, andi be an instruction ofS. If i is sequential, then NIC(i, i1) =
{NextLoci1}.

(42) LetSbe a realistic standard IC-Ins-separated definite non empty non void AMI overN and
i be an instruction ofS. If i is sequential, theni is non halting.

Let us considerN and letSbe a realistic standard IC-Ins-separated definite non empty non void
AMI over N. Observe that every instruction ofSwhich is sequential is also non halting and every
instruction ofSwhich is halting is also non sequential.

One can prove the following proposition

(43) For every instructioni of T such that JUMP(i) is non empty holdsi is non sequential.
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6. CLOSEDNESS OFFINITE PARTIAL STATES

Let N be a set with non empty elements, letSbe an IC-Ins-separated definite non empty non void
AMI over N, and letF be a finite partial state ofS. We say thatF is closed if and only if:

(Def. 17) For every instruction-locationl of Ssuch thatl ∈ domF holds NIC(πl F, l)⊆ domF.

We say thatF is really-closed if and only if:

(Def. 18) For every statesof Ssuch thatF ⊆ sandIC s∈ domF and for every natural numberk holds
IC (Computation(s))(k) ∈ domF.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a finite partial state ofS. We say thatF is para-closed if and
only if:

(Def. 19) For every statesof Ssuch thatF ⊆ sandICs = ilS(0) and for every natural numberk holds
IC (Computation(s))(k) ∈ domF.

One can prove the following propositions:

(44) LetSbe a standard steady-programmed IC-Ins-separated definite non empty non void AMI
overN andF be a finite partial state ofS. If F is really-closed and ilS(0) ∈ domF, thenF is
para-closed.

(45) LetSbe an IC-Ins-separated definite steady-programmed non empty non void AMI overN
andF be a finite partial state ofS. If F is closed, thenF is really-closed.

Let N be a set with non empty elements and letS be an IC-Ins-separated definite steady-
programmed non empty non void AMI overN. Note that every finite partial state ofS which is
closed is also really-closed.

Next we state the proposition

(46) For every standard realistic halting IC-Ins-separated definite non empty non void AMIS
overN holds ilS(0)7−→. haltS is closed.

Let N be a set with non empty elements, letS be an IC-Ins-separated definite non empty non
void AMI over N, and letF be a finite partial state ofS. We say thatF is lower if and only if the
condition (Def. 20) is satisfied.

(Def. 20) Letl be an instruction-location ofS. Supposel ∈ domF. Let m be an instruction-location
of S. If m≤ l , thenm∈ domF.

We now state the proposition

(47) Every empty finite partial state ofS is lower.

Let N be a set with non empty elements and letSbe an IC-Ins-separated definite non empty non
void AMI over N. Observe that every finite partial state ofSwhich is empty is also lower.

We now state the proposition

(48) For every elementi of the instructions ofT holds ilT(0)7−→. i is lower.

Let N be a set with non empty elements and letS be a standard IC-Ins-separated definite non
empty non void AMI overN. One can check that there exists a finite partial state ofS which is
lower, non empty, trivial, and programmed.

The following two propositions are true:

(49) For every lower non empty programmed finite partial stateF of T holds ilT(0) ∈ domF.

(50) For every lower programmed finite partial stateP of T holdsz< cardP iff il T(z) ∈ domP.
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Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty programmed finite partial state ofS. The functor
LastLocF yields an instruction-location ofSand is defined by the condition (Def. 21).

(Def. 21) There exists a finite non empty natural-membered setM such thatM = {locnum(l); l ranges
over elements of the instruction locations ofS: l ∈ domF} and LastLocF = ilS(maxM).

The following propositions are true:

(51) For every non empty programmed finite partial stateF of T holds LastLocF ∈ domF.

(52) For all non empty programmed finite partial statesF , G of T such thatF ⊆ G holds
LastLocF ≤ LastLocG.

(53) LetF be a non empty programmed finite partial state ofT andl be an instruction-location
of T. If l ∈ domF, thenl ≤ LastLocF.

(54) Let F be a lower non empty programmed finite partial state ofT andG be a non empty
programmed finite partial state ofT. If F ⊆G and LastLocF = LastLocG, thenF = G.

(55) For every lower non empty programmed finite partial stateF of T holds LastLocF =
ilT(cardF −′ 1).

Let N be a set with non empty elements and letS be a standard steady-programmed IC-Ins-
separated definite non empty non void AMI overN. One can verify that every finite partial state of
Swhich is really-closed, lower, non empty, and programmed is also para-closed.

Let N be a set with non empty elements, letSbe a standard halting IC-Ins-separated definite non
empty non void AMI overN, and letF be a non empty programmed finite partial state ofS. We say
thatF is halt-ending if and only if:

(Def. 22) F(LastLocF) = haltS.

We say thatF is unique-halt if and only if:

(Def. 23) For every instruction-locationf of S such thatF( f ) = haltS and f ∈ domF holds f =
LastLocF.

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. Observe that there exists a lower non empty programmed finite
partial state ofSwhich is halt-ending, unique-halt, and trivial.

Let N be a set with non empty elements and letSbe a standard halting realistic IC-Ins-separated
definite non empty non void AMI overN. Note that there exists a finite partial state ofSwhich is
trivial, closed, lower, non empty, and programmed.

Let N be a set with non empty elements and letSbe a standard halting realistic IC-Ins-separated
definite non empty non void AMI overN. One can verify that there exists a lower non empty
programmed finite partial state ofSwhich is halt-ending, unique-halt, trivial, and closed.

LetN be a set with non empty elements and letSbe a standard halting realistic steady-programmed
IC-Ins-separated definite non empty non void AMI overN. Note that there exists a lower non empty
programmed finite partial state ofSwhich is halt-ending, unique-halt, autonomic, trivial, and closed.

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. A pre-Macro ofS is a halt-ending unique-halt lower non empty
programmed finite partial state ofS.

Let N be a set with non empty elements and letSbe a standard realistic halting IC-Ins-separated
definite non empty non void AMI overN. Note that there exists a pre-Macro ofSwhich is closed.
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[8] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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[10] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.
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