JOURNAL OF FORMALIZED MATHEMATICS
Volume12, Released 2000, ~Published 2003
Inst. of Computer Science, Univ. of Bialystok

Standard Ordering of Instruction Locations

Andrzej Trybulec Piotr Rudnicki Artur Kornitowicz
University of Biatystok  University of Alberta  University of Biatystok

MML Identifier: AMISTD_1.

WWW: http://mizar.org/JEM/Voll2/amistd_1.html

The articles([2P],[[11],[27], 28], [19]) 4], [24]/[2] [123]  [7], 18], [10], [9] [[21] /1] [16].[16].,[126],
[12], [15], [14], [13], [17], [25], [20], [3], [18], and[[1B6] provide the notation and terminology for
this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules, X are setsD is a non empty sety is a natural
number, and is a natural number.
Next we state two propositions:

(1) For every real numberholds maxXr} =r.
(2) maxn}=n.

Let us observe that there exists a finite sequence which is non trivial.
Next we state the proposition

(3) For every trivial finite sequencé of elements oD holds f is empty or there exists an
elementx of D such thatf = (x).

Let us note that every binary relation has non empty elements.
We now state the proposition

(4) idy is bijective.

Let A be a finite set and € be a set. One can verify thAt— B is finite.
Letx, y be sets. Observe that—y is trivial.

2. RESTRICTEDCONCATENATION

Let f; be a non empty finite sequence andfiebe a finite sequence. Observe tliat~ f; is non
empty.
Next we state several propositions:

(5) Let f; be a non empty finite sequence of element®adnd f, be a finite sequence of
elements oD. Then(f; ~ f2)1 = (f1)1.

(6) Let f; be a finite sequence of elementsd@fand f, be a non trivial finite sequence of
elements oD. Then(f1 ~ f2)ien(t;~~1,) = (f2)ients-
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(7) For every finite sequendeholdsf ~~ 0= f.
(8) For every finite sequendeholdsf ~ (x) = f.

(9) For all finite sequencef, f, of elements oD such that I< n andn < lenf; holds(f; ~
m f2)n - (fl)n-

(10) For all finite sequencef, f, of elements oD such that I< n andn < lenf;, holds(f; ~
o fz)lenf1+n = (fZ)n+l~

3. AMI-STRUCT

For simplicity, we adopt the following conventioM denotes a set with non empty elemerss,
denotes an IC-Ins-separated definite non empty non void AMI Byéidenotes an element of the
instructions ofS, [, |4, I, I3 denote instruction-locations & ands denotes a state &

The following proposition is true

(11) LetSbe a definite non empty non void AMI ovét, | be an element of the instructions of
S, andsbe a state o8 Thens+-((the instruction locations d§) — 1) is a state of.

Let N be a set and les be an AMI overN. One can check that every finite partial stateSof
which is empty is also programmed.

Let N be a set and I€sbe an AMI overN. One can verify that there exists a finite partial state
of Swhich is empty.

LetN be a set with non empty elements and3éke an IC-Ins-separated definite non empty non
void AMI over N. Note that there exists a finite partial stateSafhich is non empty, trivial, and
programmed.

Let N be a set with non empty elements, dbe a non void AMI oveN, leti be an element of
the instructions o8, and lets be a state 08. Observe that (the execution 8f(i)(s) is function-like
and relation-like.

Let N be a set with non empty elements and3dbe a steady-programmed IC-Ins-separated
definite non empty non void AMI oved. One can verify that there exists a finite partial stat& of
which is non empty, trivial, autonomic, and programmed.

Next we state two propositions:

(12) LetShe a steady-programmed IC-Ins-separated definite non empty non void AMNover
i1 be an instruction-location @&, andl be an element of the instructions®fTheni;——l is
autonomic.

(13) Every steady-programmed IC-Ins-separated definite non empty non void AMNoiger
programmable.

LetN be a set with non empty elements. Observe that every IC-Ins-separated definite non empty
non void AMI overN which is steady-programmed is also programmable.

LetN be a set with non empty elements, $ie a non empty non void AMI ovéd, and letT be
an instruction type o8. We say that is jump-only if and only if the condition (Def. 3) is satisfied.

(Def. 3@] Let sbe a state 0§, o be an object oF, andl be an instruction o&. If InsCodel) =T
ando # ICg, then(Exeql,s))(0) = s(0).

Let N be a set with non empty elements, &be a non empty non void AMI oveM, and letl
be an instruction 06 We say that is jump-only if and only if:

(Def. 4) InsCodéd) is jump-only.

Let us consideN, S, | and leti be an element of the instructions &f The functor NIGi,|)
yielding a subset of the instruction locationsSit defined as follows:

1 The definitions (Def. 1) and (Def. 2) have been removed.
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(Def. 5) NIC(i,l) = {ICFollowing(s) Cs=1 A s(l) =i}
Let N be a set with non empty elements, $dhe a realistic IC-Ins-separated definite non empty
non void AMI overN, leti be an element of the instructions&fand letl be an instruction-location

of S. Observe that NIQ, 1) is non empty.
Let us consideN, S, i. The functor JUMR}) yields a subset of the instruction locationsSznd

is defined as follows:
(Def. 6) JUMRi) =N{NIC(i,])}.
Let us consideN, S |. The functor SUCQ) yielding a subset of the instruction locations®f
is defined by:
(Def. 7) SUCGI) = U{NIC(i,I)\ JUMP(i)}.
Next we state two propositions:

(14) Leti be an element of the instructions &f Suppose the instruction locations®#&re non
trivial and for every instruction-locationof Sholds NIQ(i,1) = {I}. Then JUMRi) is empty.

(15) LetShbe a realistic IC-Ins-separated definite non empty non void AMI der, be an
instruction-location o5, andi be an instruction o8. If i is halting, then NICi,i;) = {i1}.

4. ORDERING OFINSTRUCTIONLOCATIONS

Let us consideN, S I1, I>. The predicaté; < I, is defined by the condition (Def. 8).

(Def. 8) There exists a non empty finite sequefficef elements of the instruction locations &f
such thatf; = 1; and fiens = |2 and for everyn such that 1< n andn < lenf holds f,1 €

SUCQ fp).
Let us note that the predicate< |, is reflexive.
The following proposition is true

(16) Ifly <lyandl; <l3, thenl; <ls.
Let us consideN, S. We say thaSis InsLoc-antisymmetric if and only if:

(Def. 9) Forallly, I2 such that; <1, andl, < |1 holdsl; = I>.
Let us consideN, S. We say thaSis standard if and only if the condition (Def. 10) is satisfied.

(Def. 10) There exists a functiohfrom N into the instruction locations & such thatf is bijective
and for all natural numbems, n holdsm < niff f(m) < f(n).

We now state three propositions:
(17) Letfq, f2 be functions fronN into the instruction locations @ Suppose that
(i) f1is bijective,

(i) for all natural numbersn, n holdsm < niff f;(m) < f1(n),
(i) fois bijective, and

(iv) for all natural numbersn, n holdsm < niff fo(m) < fa(n).

Then fl = f2.
(18) Letf be afunction fronN into the instruction locations @&. Suppos€ is bijective. Then

the following statements are equivalent

(i) for all natural numbersn, n holdsm < niff f(m) < f(n)

(i) for every natural numbek holds f (k+ 1) € SUCQ f (k)
such thatf (j) € SUCQ f(k)) holdsk < j.

(19) Sis standard if and only if there exists a functibfrom N into the instruction locations of
Ssuch thatf is bijective and for every natural numbleholds f (k+ 1) € SUCQ f (k)) and

for every natural numbejrsuch thatf (j) € SUCC f(k)) holdsk < j.

) and for every natural numbgr
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5. STANDARD TRIVIAL COMPUTER

Let N be a set with non empty elements. The functor 8¥Cyielding a strict AMI overN is
defined by the conditions (Def. 11).

(Def. 11) The carrier of STAN) = NU {N} and the instruction counter of STR) = N and the in-
struction locations of ST@N) = N and the instruction codes of STR) = {0,1} and the
instructions of STON) = {(0, 0), (1, 0)} and the object kind of STM) = (N — {(1,
0),(0, 0)})+-({N} — N) and there exists a functiohfrom [ (the object kind of STQN))
into [ (the object kind of STQN)) such that for every elemerst of [](the object kind
of STC(N)) holds f(s) = s+-({N} — succs(N)) and the execution of STBI) = ({(1,

0)} = f)+-({(0, 0) } = id[ythe object kind of STEN)))-

LetN be a set with non empty elements. Note that the instruction locations dNgT€infinite.

Let N be a set with non empty elements. One can verify that B/Gs non empty and non
void.

Let N be a set with non empty elements. One can check that(ST@ IC-Ins-separated,
definite, realistic, steady-programmed, and data-oriented.

One can prove the following propositions:

(20) For every instructionof STC(N) such that InsCodg) = 0 holdsi is halting.

(21) For every instructionof STC(N) such that InsCodé) = 1 holdsi is non halting.

(22) For every elementof the instructions of STQN) holds InsCod@) = 1 or InsCodé) = 0.
(23) Every instruction of STQN) is jump-only.

(24) For every instruction-locatidnof STC(N) such that = zholds SUCQ!) = {z,z+ 1}.

Let N be a set with non empty elements. One can verify that @@ standard.

Let N be a set with non empty elements. One can check tha{STiS halting.

Let N be a set with non empty elements. Note that there exists an IC-Ins-separated definite
non empty non void AMI oveN which is standard, halting, realistic, steady-programmed, and
programmable.

In the sequeTl denotes a standard IC-Ins-separated definite non empty non void AMNover

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letk be a natural number. The functog(ik) yielding an instruction-
location ofSis defined by the condition (Def. 12).

(Def. 12) There exists a functiohfrom N into the instruction locations & such thatf is bijective
and for all natural numbers, n holdsm < niff f(m) < f(n) and ils(k) = f(k).

We now state two propositions:
(25) For all natural numbelg, ko such that it (ky) = il 1 (k2) holdsk; = k.
(26) For every instruction-locatidnof T there exists a natural numbesuch that =il 1 (k).

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letl be an instruction-location d. The functor locnur(l) yielding a
natural number is defined by:

(Def. 13) ils(locnum(l)) =1.

LetN be a set with non empty elements, $dte a standard IC-Ins-separated definite non empty
non void AMI overN, and letl be an instruction-location @& Then locnunil) is a natural number.
Next we state four propositions:

(27) For all instruction-locationlg, I, of T such that locnurtl;) = locnum(l») holdsl; = I5.
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(28) For all natural numbets, ky holds ik (k) < ilt (ko) iff ki < k.
(29) For all instruction-locationlg, I, of T holds locnun(l1) < locnunly) iff 11 <I>.
(380) If Sis standard, theBis InsLoc-antisymmetric.

Let us consideN. Note that every IC-Ins-separated definite non empty non void AMI biver
which is standard is also InsLoc-antisymmetric.

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, let f be an instruction-location df, and letk be a natural number. The
functor f 4k yields an instruction-location @ and is defined by:

(Def. 14) f+k=ilg(locnum(f)+Kk).
Next we state three propositions:
(31) For every instruction-locatiohof T holdsf +0= f.
(32) For all instruction-location$, g of T such thatf +z=g+zholdsf =g.
(33) For every instruction-locatioh of T holds locnunif) +z = locnum(f + z).

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letf be an instruction-location @& The functor NextLod yielding an
instruction-location oBis defined by:

(Def. 15) NextLocf = f+1.
The following propositions are true:
(34) For every instruction-locatioh of T holds NextLod =il (locnum(f) + 1).
(35) For every instruction-locatiohof T holds f # NextLocf.
(36) For all instruction-location$, g of T such that NextLoé = NextLocg holdsf =g.
(37) ilstony(2) =2

(38) For every instructionof STC(N) and for every stateof STC(N) such that InsCodé) = 1
holds(Exed(i,s))(IC ston)) = NextLoclCs.

(39) Letl be an instruction-location of ST®) andi be an element of the instructions of
STC(N). If InsCod€i) = 1, then NIQ(i,l) = {NextLocl }.

(40) For every instruction-locatidnof STC(N) holds SUCCI) = {I,NextLocl }.

LetN be a set with non empty elements, $dte a standard IC-Ins-separated definite non empty
non void AMI overN, and leti be an instruction o6. We say that is sequential if and only if:

(Def. 16) For every stateof Sholds(Exedi,s))(ICs) = NextLoclCs.

Next we state two propositions:

(41) LetSbe a standard realistic IC-Ins-separated definite non empty non void AMNyer
be an instruction-location @&, andi be an instruction o8. If i is sequential, then NIC,i1) =
{NextLoci }.

(42) LetSbe arealistic standard IC-Ins-separated definite non empty non void AMNbaad
i be an instruction o&. If i is sequential, thenis non halting.

Let us consideN and letSbe a realistic standard IC-Ins-separated definite non empty non void
AMI over N. Observe that every instruction 8fwhich is sequential is also non halting and every
instruction ofSwhich is halting is also non sequential.

One can prove the following proposition

(43) For every instructionof T such that JUMHA) is non empty holdsis non sequential.
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6. CLOSEDNESS OFFINITE PARTIAL STATES

Let N be a set with non empty elements, &be an IC-Ins-separated definite non empty non void
AMI over N, and letF be a finite partial state &. We say thaF is closed if and only if:

(Def. 17) For every instruction-locatidrof Ssuch that € domF holds NIQTyF,|) C domF.
We say thaf is really-closed if and only if;

(Def. 18) For every stateof Ssuch thaF C sandICs € domF and for every natural numbkiholds
IC (computatiors))(k) € dOMF.

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a finite partial state &. We say thaf is para-closed if and
only if:

(Def. 19) For every stateof Ssuch thaf C sandICs = ils(0) and for every natural numbk&rholds
IC(Computatiot(ls))(k) € domF.

One can prove the following propositions:

(44) LetSbe a standard steady-programmed IC-Ins-separated definite non empty non void AMI
overN andF be a finite partial state @& If F is really-closed and 4(0) € domF, thenF is
para-closed.

(45) LetSbe an IC-Ins-separated definite steady-programmed non empty non void AMilover
andF be a finite partial state @& If F is closed, theif is really-closed.

Let N be a set with non empty elements and $be an IC-Ins-separated definite steady-
programmed non empty non void AMI ovél. Note that every finite partial state 8which is
closed is also really-closed.

Next we state the proposition

(46) For every standard realistic halting 1C-Ins-separated definite non empty non voiGGAMI
overN holds ils(0)——halts is closed.

Let N be a set with non empty elements, &be an IC-Ins-separated definite non empty non
void AMI over N, and letF be a finite partial state d&& We say tha¥ is lower if and only if the
condition (Def. 20) is satisfied.

(Def. 20) Letl be an instruction-location & Supposé € domF. Let m be an instruction-location
of S If m< 1, thenme domF.

We now state the proposition
(47) Every empty finite partial state &fis lower.

LetN be a set with non empty elements and3&ie an IC-Ins-separated definite non empty non
void AMI over N. Observe that every finite partial state®ivhich is empty is also lower.
We now state the proposition

(48) For every elementof the instructions of holds ik (0)——i is lower.

Let N be a set with non empty elements and3die a standard IC-Ins-separated definite non
empty non void AMI oveN. One can check that there exists a finite partial stat® which is
lower, non empty, trivial, and programmed.

The following two propositions are true:

(49) For every lower non empty programmed finite partial Sfaté T holds ilr (0) € domF.

(50) For every lower programmed finite partial stBtef T holdsz < cardP iff il t(z) € domP.
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LetN be a set with non empty elements, $dte a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty programmed finite partial stat&ofhe functor
LastLocF yields an instruction-location & and is defined by the condition (Def. 21).

(Def. 21) There exists a finite non empty natural-membereMsetch thaM = {locnum(l);| ranges
over elements of the instruction locations®f € domF } and LastLod = il s(maxM).

The following propositions are true:

(51) For every non empty programmed finite partial skatef T holds LastLod € domF.

(52) For all non empty programmed finite partial stakesG of T such thatF C G holds
LastLocF < LastLocG.

(53) LetF be a non empty programmed finite partial statd gfndl be an instruction-location
of T. If | € domF, thenl < LastLocF.

(54) LetF be a lower non empty programmed finite partial statd agnd G be a non empty
programmed finite partial state ®f If F C G and LastLo¢ = LastLocG, thenF = G.

(55) For every lower non empty programmed finite partial statef T holds LastLo¢ =
il (cardF —'1).

Let N be a set with non empty elements and3$dbe a standard steady-programmed IC-Ins-
separated definite non empty non void AMI oWer One can verify that every finite partial state of
Swhich is really-closed, lower, non empty, and programmed is also para-closed.

LetN be a set with non empty elements, $die a standard halting IC-Ins-separated definite non
empty non void AMI oveiN, and letF be a non empty programmed finite partial stat&dfVe say
thatF is halt-ending if and only if:

(Def. 22) F(LastLocF) = halts.
We say thaf is unique-halt if and only if:

(Def. 23) For every instruction-locatiof of S such thatF(f) = halts and f € domF holds f =
LastLocF.

LetN be a set with non empty elements and3éte a standard halting IC-Ins-separated definite
non empty non void AMI oveN. Observe that there exists a lower non empty programmed finite
partial state oSwhich is halt-ending, unique-halt, and trivial.

Let N be a set with non empty elements and3éke a standard halting realistic IC-Ins-separated
definite non empty non void AMI oveX. Note that there exists a finite partial stateSofhich is
trivial, closed, lower, non empty, and programmed.

LetN be a set with non empty elements and3éie a standard halting realistic IC-Ins-separated
definite non empty non void AMI oveN. One can verify that there exists a lower non empty
programmed finite partial state 8fwhich is halt-ending, unique-halt, trivial, and closed.

LetN be a set with non empty elements and3be a standard halting realistic steady-programmed
IC-Ins-separated definite non empty non void AMI oiderNote that there exists a lower non empty
programmed finite partial state 8fvhich is halt-ending, unique-halt, autonomic, trivial, and closed.

LetN be a set with non empty elements and3éte a standard halting IC-Ins-separated definite
non empty non void AMI oveN. A pre-Macro ofSis a halt-ending unique-halt lower non empty
programmed finite partial state 8f

Let N be a set with non empty elements and3&k a standard realistic halting IC-Ins-separated
definite non empty non void AMI oveX. Note that there exists a pre-Macro®Which is closed.
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