On the Instructions of SCM¹

Artur Korniłowicz University of Białystok

MML Identifier: AMI_6.

WWW: http://mizar.org/JFM/Vol13/ami_6.html

The articles [17], [23], [18], [14], [24], [7], [8], [2], [3], [19], [22], [1], [9], [5], [10], [15], [4], [6], [12], [13], [20], [16], [21], and [11] provide the notation and terminology for this paper.

For simplicity, we follow the rules: a, b denote data-locations, i_1 , i_2 , i_3 denote instruction-locations of **SCM**, s_1 , s_2 denote states of **SCM**, T denotes an instruction type of **SCM**, and k denotes a natural number.

The following propositions are true:

- (1) $a \notin \text{the instruction locations of SCM}$.
- (2) Data-Loc_{SCM} \neq the instruction locations of **SCM**.
- (3) For every object o of **SCM** holds $o = \mathbf{IC_{SCM}}$ or $o \in \mathbf{SCM}$ or
- (4) If $i_2 \neq i_3$, then $Next(i_2) \neq Next(i_3)$.
- (5) If s_1 and s_2 are equal outside the instruction locations of **SCM**, then $s_1(a) = s_2(a)$.
- (6) Let N be a set with non empty elements, S be a realistic IC-Ins-separated definite non empty non void AMI over N, t, u be states of S, i_1 be an instruction-location of S, e be an element of ObjectKind(\mathbf{IC}_S), and I be an element of ObjectKind(i_1). If $e = i_1$ and $u = t + (\mathbf{IC}_S \longmapsto e, i_1 \longmapsto I]$, then $u(i_1) = I$ and $\mathbf{IC}_u = i_1$ and $\mathbf{IC}_{\text{Following}(u)} = (\text{Exec}(u(\mathbf{IC}_u), u))(\mathbf{IC}_S)$.
- (7) AddressPart($\mathbf{halt_{SCM}}$) = \emptyset .
- (8) AddressPart(a := b) = $\langle a, b \rangle$.
- (9) AddressPart(AddTo(a,b)) = $\langle a,b \rangle$.
- (10) AddressPart(SubFrom(a,b)) = $\langle a,b \rangle$.
- (11) AddressPart(MultBy(a,b)) = $\langle a,b \rangle$.
- (12) AddressPart(Divide(a,b)) = $\langle a,b \rangle$.
- (13) AddressPart(goto i_2) = $\langle i_2 \rangle$.
- (14) AddressPart(**if** a = 0 **goto** i_2) = $\langle i_2, a \rangle$.
- (15) AddressPart(**if** a > 0 **goto** i_2) = $\langle i_2, a \rangle$.

¹This work has been partially supported by TYPES grant IST-1999-29001.

(16) If T = 0, then AddressParts $T = \{0\}$.

Let us consider *T*. Observe that AddressParts *T* is non empty. We now state a number of propositions:

- (17) If T = 1, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (18) If T = 2, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (19) If T = 3, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (20) If T = 4, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (21) If T = 5, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (22) If T = 6, then dom $\prod_{\text{AddressParts } T} = \{1\}$.
- (23) If T = 7, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (24) If T = 8, then dom $\prod_{\text{AddressParts } T} = \{1, 2\}$.
- (25) $\prod_{\text{AddressParts InsCode}(a:=b)} (1) = \text{Data-Loc}_{\text{SCM}}.$
- (26) $\prod_{\text{AddressParts InsCode}(a:=b)} (2) = \text{Data-Loc}_{\text{SCM}}.$
- (27) $\prod_{\text{AddressParts InsCode}(\text{AddTo}(a.b))} (1) = \text{Data-Loc}_{\text{SCM}}.$
- (28) $\prod_{\text{AddressParts InsCode}(\text{AddTo}(a,b))} (2) = \text{Data-Loc}_{\text{SCM}}.$
- (29) $\prod_{\text{AddressParts InsCode}(\text{SubFrom}(a,b))} (1) = \text{Data-Loc}_{\text{SCM}}.$
- (30) $\prod_{\text{AddressParts InsCode}(\text{SubFrom}(a,b))} (2) = \text{Data-Loc}_{\text{SCM}}.$
- (31) $\prod_{\text{AddressParts InsCode}(\text{MultBy}(a,b))} (1) = \text{Data-Loc}_{\text{SCM}}.$
- (32) $\prod_{\text{AddressParts InsCode}(\text{MultBy}(a,b))} (2) = \text{Data-Loc}_{\text{SCM}}.$
- (33) $\prod_{\text{AddressParts InsCode}(\text{Divide}(a,b))} (1) = \text{Data-Loc}_{\text{SCM}}.$
- (34) $\prod_{\text{AddressParts InsCode}(\text{Divide}(a,b))} (2) = \text{Data-Loc}_{\text{SCM}}.$
- (35) $\prod_{\text{AddressParts InsCode(goto } i_2)} (1) = \text{the instruction locations of SCM}.$
- (36) $\prod_{\text{AddressParts InsCode}(\text{if } a=0 \text{ goto } i_2)} (1) = \text{the instruction locations of SCM}.$
- (37) $\prod_{\text{AddressParts InsCode}(\text{if } a=0 \text{ goto } i_2)} (2) = \text{Data-Loc}_{\text{SCM}}.$
- (38) $\prod_{\text{AddressParts InsCode}(\text{if } a>0 \text{ goto } i_2)}(1) = \text{the instruction locations of SCM}.$
- (39) $\prod_{\text{AddressParts InsCode}(\mathbf{if}\ a>0\ \mathbf{goto}\ i_2)}(2) = \text{Data-Loc}_{\mathbf{SCM}}.$
- (40) $NIC(\mathbf{halt_{SCM}}, i_1) = \{i_1\}.$

Let us note that JUMP(halt_{SCM}) is empty. We now state the proposition

(41) $NIC(a:=b,i_1) = {Next(i_1)}.$

Let us consider a, b. Observe that JUMP(a:=b) is empty. We now state the proposition

(42) $NIC(AddTo(a,b),i_1) = {Next(i_1)}.$

Let us consider a,b. One can verify that $\mathrm{JUMP}(\mathrm{AddTo}(a,b))$ is empty. We now state the proposition

(43) $NIC(SubFrom(a,b),i_1) = \{Next(i_1)\}.$

Let us consider a, b. Observe that JUMP(SubFrom(a,b)) is empty. We now state the proposition

(44) NIC(MultBy $(a,b), i_1$) = {Next (i_1) }.

Let us consider a, b. Note that JUMP(MultBy(a,b)) is empty. We now state the proposition

1 1

(45) $NIC(Divide(a,b),i_1) = \{Next(i_1)\}.$

Let us consider a, b. One can verify that JUMP(Divide(a,b)) is empty. One can prove the following propositions:

- (46) NIC(goto i_2, i_1) = $\{i_2\}$.
- (47) $\text{JUMP}(\text{goto } i_2) = \{i_2\}.$

Let us consider i_2 . One can verify that JUMP(goto i_2) is non empty and trivial. We now state two propositions:

- (48) NIC(**if** a = 0 **goto** i_2, i_1) = $\{i_2, \text{Next}(i_1)\}$.
- (49) JUMP(**if** a = 0 **goto** i_2) = $\{i_2\}$.

Let us consider a, i_2 . Observe that JUMP(**if** a = 0 **goto** i_2) is non empty and trivial. One can prove the following propositions:

- (50) NIC(**if** a > 0 **goto** i_2, i_1) = $\{i_2, \text{Next}(i_1)\}$.
- (51) JUMP(**if** a > 0 **goto** i_2) = $\{i_2\}$.

Let us consider a, i_2 . Observe that JUMP(**if** a > 0 **goto** i_2) is non empty and trivial. We now state two propositions:

- (52) SUCC $(i_1) = \{i_1, \text{Next}(i_1)\}.$
- (53) Let f be a function from \mathbb{N} into the instruction locations of **SCM**. Suppose that for every natural number k holds $f(k) = \mathbf{i}_k$. Then
 - (i) f is bijective, and
- (ii) for every natural number k holds $f(k+1) \in SUCC(f(k))$ and for every natural number j such that $f(j) \in SUCC(f(k))$ holds $k \le j$.

Let us observe that **SCM** is standard.

We now state three propositions:

- (54) $il_{\mathbf{SCM}}(k) = \mathbf{i}_k$.
- (55) $\operatorname{Next}(\operatorname{il}_{\mathbf{SCM}}(k)) = \operatorname{il}_{\mathbf{SCM}}(k+1).$
- (56) $\operatorname{Next}(i_1) = \operatorname{NextLoc} i_1$.

Let us mention that InsCode(halt_{SCM}) is jump-only.

Let us note that **halt**_{SCM} is jump-only.

Let us consider i_2 . Note that InsCode(goto i_2) is jump-only.

Let us consider i_2 . Observe that goto i_2 is jump-only, non sequential, and non instruction location free.

Let us consider a, i_2 . Note that $InsCode(\mathbf{if}\ a = 0\ \mathbf{goto}\ i_2)$ is jump-only and $InsCode(\mathbf{if}\ a > 0\ \mathbf{goto}\ i_2)$ is jump-only.

Let us consider a, i_2 . One can verify that **if** a = 0 **goto** i_2 is jump-only, non sequential, and non instruction location free and **if** a > 0 **goto** i_2 is jump-only, non sequential, and non instruction location free.

Let us consider a, b. One can verify the following observations:

- * InsCode(a := b) is non jump-only,
- * InsCode(AddTo(a,b)) is non jump-only,
- * InsCode(SubFrom(a,b)) is non jump-only,
- * InsCode(MultBy(a,b)) is non jump-only, and
- * InsCode(Divide(a,b)) is non jump-only.

Let us consider a, b. One can check the following observations:

- * a := b is non jump-only and sequential,
- * AddTo(a,b) is non jump-only and sequential,
- * SubFrom(a,b) is non jump-only and sequential,
- * MultBy(a,b) is non jump-only and sequential, and
- * Divide(a,b) is non jump-only and sequential.

Let us observe that **SCM** is homogeneous and has explicit jumps and no implicit jumps.

Let us note that **SCM** is regular.

We now state three propositions:

- (57) IncAddr(goto i_2, k) = goto il_{SCM}(locnum(i_2) + k).
- (58) IncAddr(**if** a = 0 **goto** i_2, k) = **if** a = 0 **goto** il_{SCM}(locnum(i_2) + k).
- (59) IncAddr(if a > 0 goto i_2, k) = if a > 0 goto il_{SCM}(locnum(i_2) + k).

Let us note that **SCM** is IC-good and Exec-preserving.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct 7.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [9] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [11] Artur Korniłowicz. On the composition of macro instructions of standard computers. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/Vol12/amistd_2.html.
- [12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_2.html.

- [14] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [15] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr_cy_1.html.
- [16] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [18] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart 1.html.
- [19] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [21] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruction locations. *Journal of Formalized Mathematics*, 12, 2000. http://mizar.org/JFM/Vol12/amistd_1.html.
- [22] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received May 8, 2001

Published January 2, 2004