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Summary. This article continues the development of the basic terminology for the
SCM as defined in[[11].[12],[[19]. There is developed of the terminology for discussing
static properties of instructions (i.e. not related to execution), for data locations, instruction
locations, as well as for states and partial stateS8@%. The main contribution of the article
consists in characterizinCM computations starting in states containing autonomic finite
partial states.
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The articlesl[15],[[21],[[2].[[8],[[18],[[4],[[17].[[15],[[22].[16].[17].[[0].[120],.[1],[[14],[[8].[[10].,[[5],
[11], [12], [19], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(3E] For all natural numbens), k such thak # 0 holdsm-k+k=m.

(4)
(®)
(6)
@)
(8)
©)
(10)
(11)
12)

For all natural numberis j such thaf > j holds(i—'j)+j =i.

For all functionsf, g and for all set#\, B such thatA C Bandf [B=g[B holdsf [A= g[A.
For all functionsp, g and for every sef holds(p+-g) A = plA+-qlA.

For all functionsf, g and for every sef\ such thatA misses dorg holds(f+-g)[A= fJA.
For all functionsf, g and for every sef such that donfi missesA holds(f+-g)[A = gJA.
For all functionsf, g, h such that dong = domh holds f +-g+-h = f+:h.

For all functionsf, g such thatf C g holdsf+-g=gandg+-f =g.

For every functiorf and for every sef\ holdsf+-f[A= f.

For all functionsf, g and for all set8, C such that donfi C B and dong C C andB misses

Cholds(f+-g)|B= f and(f+-g)|C=g.

(13)

(14)

For all functionsp, q and for every sef such that donp C A and dong missesA holds
(p+-a)[A=p.
For every functiorf and for all set#, B holds f [(AUB) = f[A+-f[B.

1 The propositions (1) and (2) have been removed.
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2. TOTAL STATES OFSCM
The following propositions are true:

(15) Letabe a data-location arslbe a state 06CM. Then(ExedDivide(a,a),s))(ICscm) =
Next(ICs) and (ExeqDivide(a,a),s))(a) = s(a) mods(a) and for every data-locationsuch
thatc # a holds(ExedDivide(a,a),s))(c) = s(c).

(16) For every set such tha € Data-Logcm holdsx is a data-location.
(18E] For every data-locatiod; there exists a natural numbiesuch thatl; = d;.
(19) For every instruction-locatian of SCM there exists a natural numbiesuch thai; = ;.

(20) For every data-locatioa, holdsd; # IC scm.

In the sequeN denotes a set with non empty elements 8ddnotes an IC-Ins-separated definite
non empty non void AMI oveN.
Next we state a number of propositions:

(ZZE] For every instruction-location of SCM and for every data-locatiomhy holdsi; # d;.
(23) The carrier o5CM = {IC scm} UData-Logcm U Instr-LoGscm.

(24) Letsbe a state o5CM, d be a data-location, anldbe an instruction-location dCM.
Thend € domsandl € doms.

(25) For every statsof SholdsIC s € doms.

(26) Letsy, s, be states o6CM. SupposdC ) = IC s,y and for every data-locatioa holds
s1(a) = s2(a) and for every instruction-locatianof SCM holdss; (i) = s;(i). Thens; = s,.

(27) For every state of SCM holds Data-Logcy € doms.

(28) For every statsof SCM holds Instr-Logcy € doms.

(29) For every statsof SCM holds donfs|Data-Logcym) = Data-Logcw.
(30) For every stateof SCM holds donfs|Instr-Locscm) = Instr-Locscw.
(31) Data-Logcywm is not finite.

(32) The instruction locations &CM are not finite.

One can verify that Data-Leg is infinite and the instruction locations 8CM is infinite.
We now state three propositions:

(33) Data-Logcpm misses Instr-Logcm.
(34) For every stateof Sholds Start-AfICs) = s[{ICs}.
(35) For every instruction-locatidnof Sholds Start-Afl) = {(ICs, 1) }.

Let N be a set, leA be an AMI overN, and letl be an element of the instructions Af The
functor InsCodé ) yielding an instruction type oA is defined by:

(Def. 1) InsCodd) =I;.

Let! be an instruction oSCM. Observe that InsCod is natural.
Let | be an instruction oBCM. The functor@| yielding an element of Instey is defined as
follows:

2 The proposition (17) has been removed.
3 The proposition (21) has been removed.
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(Def.2) @ =1.

Let I; be an element of Instr-Leeyw. The functorl; " yields an instruction-location c8CM
and is defined by:

(Def.3) 11" =14.

Let I, be an element of Data-Lgeym. The functorl, " yielding a data-location is defined as
follows:

(Def. 4) 11" =14.
One can prove the following proposition
(36) For every instructiohof SCM holds InsCodd) < 8.

In the sequed, b are data-locations argis an instruction-location dbCM.
The following propositions are true:

(37) InsCodéhaltscm) =0.

(38) InsCodéa:=b) = 1.

(39) InsCodéAddTo(a,b)) =2.
(40) InsCodéSubFronga,b)) = 3.
(41) InsCodéMultBy(a,b)) = 4.
(42) InsCodéDivide(a,b)) =5.
(43) InsCodégotoly) = 6.

(44) InsCodéf a=0gotoly) =7.
(45) InsCodéf a> 0gotol;) =8.

In the sequetly, d3 denote data-locations ahgddenotes an instruction-location SCM.
The following propositions are true:

(46) For every instruction, of SCM such that InsCod&) = 0 holdsi, = haltscwm.

(47) For every instructiom, of SCM such that InsCod&) = 1 there existd,, d3 such that
i2 = dz:=d3.

(48) For every instructiom, of SCM such that InsCod&) = 2 there existd,, d3 such that
ip = AddTO(dz7 d3).

(49) For every instructiot, of SCM such that InsCod&) = 3 there existdy, d3 such that
o= SubFron@dz,dg).

(50) For every instructiom, of SCM such that InsCod&) = 4 there existd,, d3 such that
i2 = MultBy (dz,d3).

(51) For every instructiom, of SCM such that InsCod&) = 5 there existd,, d3 such that
ip = DiVide(dz, d3).

(52) For every instructiof, of SCM such that InsCod&) = 6 there existd; such that, =
gotol;.

(53) For every instructior, of SCM such that InsCod&) = 7 there existi;, d2 such that
ip =Iif dp =0gotol;.

(54) For every instructiom, of SCM such that InsCod&) = 8 there existl;, d, such that
io =if d» > 0gotols.
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(55) For every instruction-location of SCM holds(@gotol;) address= I.

(56) For every instruction-locatioh of SCM and for every data-locatioa holds (@(if a =
0gotolq))address= 1, and(@(if a=0gotol;)) address= a.

(57) For every instruction-location of SCM and for every data-locatioa holds (€(if a >
0gotol;))address= I, and(@(if a> 0 gotol;)) address= a.

(58) For all states;, s, of SCM such thas; [ (Data-LogemU {ICsem}) = s2[(Data-LogemU
{ICscm}) and for every instructiohof SCM holds Exe¢l,s;) [ (Data-LogcmU{ICscm}) =

Exedl,s)[(Data-LogcmU{ICscm}).

(59) Foreveryinstructionof SCM and for every stateof SCM holds Exe¢i, s) [Instr-LoGscym =
slInstr-Locscm.

3. FINITE PARTIAL STATES OFSCM

Next we state the proposition

(60) For every finite partial statp of S and for every stats of S such thaiCs € domp and
pCsholdsiCp=ICs.

Let us consideN, S let p be a finite partial state &, and letl; be an instruction-location &.
Let us assume th&t € domp. The functorr, p yields an instruction o6 and is defined as follows:

(Def.5) i, p=p(l1).
Next we state the proposition

(61) LetN be a setSbe an AMI overN, x be a set, ang be a finite partial state @& If x C p,
thenx is a finite partial state ob.

Let N be a set, leS be an AMI overN, and letp be a finite partial state db. The functor
ProgramPafip) yielding a programmed finite partial state®is defined as follows:

(Def. 6) ProgramPafp) = p[the instruction locations d&.

Let N be a set, leE be a non empty AMI oveN, and letp be a finite partial state & The
functor DataPa(ip) yielding a finite partial state dis defined by:

(Def. 7) DataPaftp) = p[((the carrier ofS)\ ({IC s} Uthe instruction locations d)).

Let N be a set, leSbe a non empty AMI oveN, and letl; be a finite partial state & We say
thatly is data-only if and only if:

(Def. 8) dom; misses{IC s} Uthe instruction locations d&.

Let N be a set and Ie5 be a non empty AMI oveN. Note that there exists a finite partial state

of Swhich is data-only.
We now state a number of propositions:

(62) For every seN and for every non empty AME overN and for every finite partial state
of Sholds DataPafp) C p.

(63) For every sel and for every AMIS overN and for every finite partial state of Sholds
ProgramPafip) C p.

(64) LetShe a steady-programmed IC-Ins-separated definite non empty non void AMNover
p be a finite partial state &, ands be a state of. If p C s, then for every natural numbeér

holds ProgramPap) C (Computatiofs))(i).

(65) For every sel and for every non empty AME overN and for every finite partial state
of SholdsIC s ¢ dom DataPafip).
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(66) LetSbe an IC-Ins-separated definite realistic non empty non void AMI bvand p be a
finite partial state o6 ThenIC s ¢ dom ProgramPafp).

(67) For every selN and for every non empty AME overN and for every finite partial state
of Sholds{IC s} misses dom DataPaf).

(68) LetSbe an IC-Ins-separated definite realistic non empty non void AMI bvand p be a
finite partial state o8 Then{ICs} misses dom ProgramPgp}.

(69) For every finite partial stateof SCM holds dom DataPajp) C Data-Logcm.

(70) For every finite partial stageof SCM holds dom ProgramPdg) C Instr-LoGscwm.
(71) For all finite partial statep, g of Sholds dom DataPaip) misses dom ProgramPégj.
(72) For every programmed finite partial st@tef Sholds ProgramPaip) = p.

(73) For every finite partial state of Sand for every instruction-locationof S such that <
domp holdsl € dom ProgramPa(p).

(74) Letp be a data-only finite partial state 8fandq be a finite partial state & Thenp C q
if and only if p C DataPartq).

(75) LetSbe an IC-Ins-separated definite realistic non empty non void AMI hveemd p be a fi-
nite partial state d8. If IC s € domp, thenp = Start-A{(IC ,)+- ProgramPa(ip)+- DataPartp).

Let us consideN, Sand letl; be a partial function from FinPart&) to FinPartStS). We say
thatls is data-only if and only if the condition (Def. 9) is satisfied.

(Def. 9) Letp be a finite partial state @& Suppose € doml;. Thenp is data-only and for every
finite partial statey of Ssuch thag = 11(p) holdsq is data-only.

We now state the proposition

(76) LetSbe an IC-Ins-separated definite realistic non empty non void AMI bvandp be a
finite partial state o&. If ICs € domp, thenp is not programmed.

Let us consideN, let Sbe a non void AMI ovelN, let s be a state o, and letp be a finite
partial state o5, Thens+-pis a state ofs.
We now state several propositions:

(77) Leti be an instruction 08CM, s be a state 06CM, andp be a programmed finite partial
state ofSCM. Then Exe¢i,s+-p) = Exedi,s)+-p.

(78) For every finite partial stageof Ssuch thalC s € domp holds Start-AtIC ) C p.
(79) For every statsof Sand for every instruction-location of SholdsICs, .startat(is) = i3-

(80) For every state of SCM and for every instruction-location of SCM and for every data-
locationa holdss(a) = (s+- Start-Af(i3))(a).

(81) LetSbe an IC-Ins-separated definite realistic non empty non void AMI dyes be a
state ofS, i3 be an instruction-location df, anda be an instruction-location d&. Then
s(a) = (s+- Start-Afiz))(a).

(82) For all states, t of Sand for every sef holdss+-t[Ais a state ofs.
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4., AUTONOMIC FINITE PARTIAL STATES OFSCM
We now state the proposition

(83) For every autonomic finite partial stgie@f SCM such that DataPdnp) =~ 0 holdsIC scm €
domp.

Let us note that there exists a finite partial stateS&fM which is autonomic and non pro-
grammed.
One can prove the following propositions:

(84) For every autonomic non programmed finite partial gied€SCM holdsIC scpm € domp.

(85) For every autonomic finite partial stgpeof SCM such thalC scym € domp holdsIC, €
domp.

(86) Letpbe anautonomic non programmed finite partial state@f1 andsbe a state 06CM.
If pC s, then for every natural numbeholdsIC computatiors)) i) € domProgramPaip).

(87) Let p be an autonomic non programmed finite partial stateS6M and s;, s, be
states of SCM. Supposep C s1 andp C s,. Let i be a natural number,, d; be data-
locations, |{ be an instruction-location o8CM, and | be an instruction ofSCM. If

| = Curlnst((Computatioiis; ) )(i)), thenlC computatiotisy))(i) = |C (cComputatiosy))i) and! =
Curlnsti((Computatiorisz))(i)).

(88) Let p be an autonomic non programmed finite partial stateSGM and s;, s, be
states of SCM. Supposep C 51 and p C 5. Let i be a natural numberd,, ds
be data-locations]; be an instruction-location oSCM, and | be an instruction of
SCM. If | = Curlnst{(Computationis;))(i)), then if | = dx:=d3 and d, € domp, then
(Computatiors;))(i)(ds) = (Computations;)) (i) (ds).

(89) Let p be an autonomic non programmed finite partial stateSGM and s;, s, be
states of SCM. Supposep C 51 and p C 5. Let i be a natural numberd,, ds
be data-locations]; be an instruction-location oSCM, and | be an instruction of
SCM. Supposd = Curlnst((Computatiofis;))(i)). If | = AddTo(d,,ds) andd, € domp,
then (Computatioits;))(i)(dz) + (Computatioris;))(i)(d3) = (Computationsp))(i)(dz) +
(Computatioifsy)) (i) (ds).

(90) Let p be an autonomic non programmed finite partial stateSGM and s;, s, be
states of SCM. Supposep C s and p C s,. Let i be a natural numberd,, d3 be
data-locations); be an instruction-location o8CM, and| be an instruction ofSCM.
Supposel = Curlnsti((Computatiofis;))(i)). If | = SubFrontdz,d3) and d, € domp,
then (Computationis;))(i)(dz) — (Computationis;))(i)(d3) = (Computatiofisy))(i)(d2) —
(Computatioifsy)) (i) (ds).

(91) Let p be an autonomic non programmed finite partial stateSGM and s;, s be
states of SCM. Supposep C 51 and p C 5. Let i be a natural numberd,, ds
be data-locations]; be an instruction-location oSCM, and | be an instruction of
SCM. Supposé = Curlnsti((Computatiois))(i)). If | = MultBy(d,ds) andd, € domp,
then (Computationis;))(i)(dz) - (Computatiois;))(i)(ds) = (Computatiofisy))(i)(dz) -
(Computatioifsy)) (i) (ds).

(92) Let p be an autonomic non programmed finite partial stateSGM and s;, s be
states of SCM. Supposep C s; andp C . Let i be a natural numbenr,, d3 be data-
locations, |1 be an instruction-location c8CM, and| be an instruction ofSCM. Sup-
posel = Curlnsti((Computatiofisy))(i)). If | = Divide(d,, ds) andd, € domp andd, # ds,
then (Computatioits;))(i)(dz) + (Computatioris;))(i)(dz) = (Computationsp))(i)(dz) +
(Computatioifsy)) (i) (ds).
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(93) Let p be an autonomic non programmed finite partial stateSGM and s;, s, be

states of SCM. Supposep C s; and p C . Let i be a natural numbed,, d; be data-
locations,l1 be an instruction-location &CM, andl be an instruction oSCM. Suppose
| = Curlnsti((Computatioiis;))(i)). If | = Divide(dy, ds) andds € domp andd, # ds, then
(Computatiorfs;))(i)(d2) mod (Computatiofisy ) )(i)(d3) = (Computatioits,))(i)(d2) mod
(Computatioifsy)) (i) (ds).

(94) Letp be an autonomic non programmed finite partial stat&6M ands;, s, be states

of SCM. Supposep C 51 andp C 5. Leti be a natural numbed,, d3 be data-locations,
1 be an instruction-location o6CM, and| be an instruction ofSCM. Supposel =
Curlnsti((Computatiofis; ) )(i)). If I = if d2 = 0 gotol; andly # Next(IC computatioisy)) (i) )
then(Computatiofs; ) )(i)(dz) = 0 iff (Computatiorisy))(i)(d2) = 0.

(95) Letp be an autonomic non programmed finite partial stat&GM ands;, s, be states

of SCM. Supposep C 5 andp C . Leti be a natural numbed,, d; be data-locations,
[1 be an instruction-location 06CM, and| be an instruction ofSCM. Supposel =
Curlnsti((Computatiofis; ) )(i)). If I = if d2 > 0 gotol; andly # Next(IC computatiotisy)(i) )
then(Computatiofs ) ) (i)(dz) > 0 iff (Computatiorisz))(i)(d2) > O.

(96) For every finite partial stateof SCM holds DataPafp) = p/Data-Logcm.

(97) For every finite partial stattof SCM holdsf is data-only iff domf C Data-Logcm.
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