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Summary. This article continues the development of the basic terminology for the
SCM as defined in [11],[12], [19]. There is developed of the terminology for discussing
static properties of instructions (i.e. not related to execution), for data locations, instruction
locations, as well as for states and partial states ofSCM. The main contribution of the article
consists in characterizingSCM computations starting in states containing autonomic finite
partial states.
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The articles [16], [21], [2], [3], [18], [4], [17], [15], [22], [6], [7], [9], [20], [1], [14], [8], [10], [5],
[11], [12], [19], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(3)1 For all natural numbersm, k such thatk 6= 0 holdsm·k÷k = m.

(4) For all natural numbersi, j such thati ≥ j holds(i−′ j)+ j = i.

(5) For all functionsf , g and for all setsA, B such thatA⊆B and f �B= g�B holds f �A= g�A.

(6) For all functionsp, q and for every setA holds(p+·q)�A = p�A+·q�A.

(7) For all functionsf , g and for every setA such thatA misses domg holds( f+·g)�A = f �A.

(8) For all functionsf , g and for every setA such that domf missesA holds( f+·g)�A = g�A.

(9) For all functionsf , g, h such that domg = domh holds f+·g+·h = f+·h.

(10) For all functionsf , g such thatf ⊆ g holds f+·g = g andg+· f = g.

(11) For every functionf and for every setA holds f+· f �A = f .

(12) For all functionsf , g and for all setsB, C such that domf ⊆ B and domg⊆C andB misses
C holds( f+·g)�B = f and( f+·g)�C = g.

(13) For all functionsp, q and for every setA such that domp⊆ A and domq missesA holds
(p+·q)�A = p.

(14) For every functionf and for all setsA, B holds f �(A∪B) = f �A+· f �B.

1 The propositions (1) and (2) have been removed.
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2. TOTAL STATES OFSCM

The following propositions are true:

(15) Leta be a data-location ands be a state ofSCM. Then(Exec(Divide(a,a),s))(ICSCM) =
Next(IC s) and(Exec(Divide(a,a),s))(a) = s(a)mods(a) and for every data-locationc such
thatc 6= a holds(Exec(Divide(a,a),s))(c) = s(c).

(16) For every setx such thatx∈ Data-LocSCM holdsx is a data-location.

(18)2 For every data-locationd1 there exists a natural numberi such thatd1 = di .

(19) For every instruction-locationi1 of SCM there exists a natural numberi such thati1 = i i .

(20) For every data-locationd1 holdsd1 6= ICSCM.

In the sequelN denotes a set with non empty elements andSdenotes an IC-Ins-separated definite
non empty non void AMI overN.

Next we state a number of propositions:

(22)3 For every instruction-locationi1 of SCM and for every data-locationd1 holdsi1 6= d1.

(23) The carrier ofSCM = {ICSCM}∪Data-LocSCM∪ Instr-LocSCM.

(24) Let s be a state ofSCM, d be a data-location, andl be an instruction-location ofSCM.
Thend ∈ doms andl ∈ doms.

(25) For every states of SholdsICS∈ doms.

(26) Lets1, s2 be states ofSCM. SupposeIC (s1) = IC (s2) and for every data-locationa holds
s1(a) = s2(a) and for every instruction-locationi of SCM holdss1(i) = s2(i). Thens1 = s2.

(27) For every states of SCM holds Data-LocSCM⊆ doms.

(28) For every states of SCM holds Instr-LocSCM⊆ doms.

(29) For every states of SCM holds dom(s�Data-LocSCM) = Data-LocSCM.

(30) For every states of SCM holds dom(s�Instr-LocSCM) = Instr-LocSCM.

(31) Data-LocSCM is not finite.

(32) The instruction locations ofSCM are not finite.

One can verify that Data-LocSCM is infinite and the instruction locations ofSCM is infinite.
We now state three propositions:

(33) Data-LocSCM misses Instr-LocSCM.

(34) For every states of Sholds Start-At(ICs) = s�{ICS}.

(35) For every instruction-locationl of Sholds Start-At(l) = {〈〈ICS, l〉〉}.

Let N be a set, letA be an AMI overN, and letI be an element of the instructions ofA. The
functor InsCode(I) yielding an instruction type ofA is defined by:

(Def. 1) InsCode(I) = I1.

Let I be an instruction ofSCM. Observe that InsCode(I) is natural.
Let I be an instruction ofSCM. The functor@I yielding an element of InstrSCM is defined as

follows:
2 The proposition (17) has been removed.
3 The proposition (21) has been removed.
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(Def. 2) @I = I .

Let l1 be an element of Instr-LocSCM. The functorl1T yields an instruction-location ofSCM
and is defined by:

(Def. 3) l1
T = l1.

Let l1 be an element of Data-LocSCM. The functorl1T yielding a data-location is defined as
follows:

(Def. 4) l1
T = l1.

One can prove the following proposition

(36) For every instructionl of SCM holds InsCode(l)≤ 8.

In the sequela, b are data-locations andl1 is an instruction-location ofSCM.
The following propositions are true:

(37) InsCode(haltSCM) = 0.

(38) InsCode(a:=b) = 1.

(39) InsCode(AddTo(a,b)) = 2.

(40) InsCode(SubFrom(a,b)) = 3.

(41) InsCode(MultBy(a,b)) = 4.

(42) InsCode(Divide(a,b)) = 5.

(43) InsCode(goto l1) = 6.

(44) InsCode(if a = 0 goto l1) = 7.

(45) InsCode(if a > 0 goto l1) = 8.

In the sequeld2, d3 denote data-locations andl1 denotes an instruction-location ofSCM.
The following propositions are true:

(46) For every instructioni2 of SCM such that InsCode(i2) = 0 holdsi2 = haltSCM.

(47) For every instructioni2 of SCM such that InsCode(i2) = 1 there existd2, d3 such that
i2 = d2:=d3.

(48) For every instructioni2 of SCM such that InsCode(i2) = 2 there existd2, d3 such that
i2 = AddTo(d2,d3).

(49) For every instructioni2 of SCM such that InsCode(i2) = 3 there existd2, d3 such that
i2 = SubFrom(d2,d3).

(50) For every instructioni2 of SCM such that InsCode(i2) = 4 there existd2, d3 such that
i2 = MultBy(d2,d3).

(51) For every instructioni2 of SCM such that InsCode(i2) = 5 there existd2, d3 such that
i2 = Divide(d2,d3).

(52) For every instructioni2 of SCM such that InsCode(i2) = 6 there existsl1 such thati2 =
goto l1.

(53) For every instructioni2 of SCM such that InsCode(i2) = 7 there existl1, d2 such that
i2 = if d2 = 0 goto l1.

(54) For every instructioni2 of SCM such that InsCode(i2) = 8 there existl1, d2 such that
i2 = if d2 > 0 goto l1.



ON THE DECOMPOSITION OF THE STATES OF SCM 4

(55) For every instruction-locationl1 of SCM holds(@goto l1)addressj = l1.

(56) For every instruction-locationl1 of SCM and for every data-locationa holds (@(if a =
0 goto l1))addressj = l1 and(@(if a = 0 goto l1))addressc = a.

(57) For every instruction-locationl1 of SCM and for every data-locationa holds (@(if a >
0 goto l1))addressj = l1 and(@(if a > 0 goto l1))addressc = a.

(58) For all statess1, s2 of SCM such thats1�(Data-LocSCM∪{ICSCM}) = s2�(Data-LocSCM∪
{ICSCM}) and for every instructionl of SCM holds Exec(l ,s1)�(Data-LocSCM∪{ICSCM}) =
Exec(l ,s2)�(Data-LocSCM∪{ICSCM}).

(59) For every instructioni of SCM and for every statesof SCM holds Exec(i,s)�Instr-LocSCM =
s�Instr-LocSCM.

3. FINITE PARTIAL STATES OFSCM

Next we state the proposition

(60) For every finite partial statep of S and for every states of S such thatICS∈ domp and
p⊆ s holdsIC p = ICs.

Let us considerN, S, let p be a finite partial state ofS, and letl1 be an instruction-location ofS.
Let us assume thatl1 ∈ domp. The functorπl1 p yields an instruction ofSand is defined as follows:

(Def. 5) πl1 p = p(l1).

Next we state the proposition

(61) LetN be a set,Sbe an AMI overN, x be a set, andp be a finite partial state ofS. If x⊆ p,
thenx is a finite partial state ofS.

Let N be a set, letS be an AMI overN, and letp be a finite partial state ofS. The functor
ProgramPart(p) yielding a programmed finite partial state ofS is defined as follows:

(Def. 6) ProgramPart(p) = p�the instruction locations ofS.

Let N be a set, letS be a non empty AMI overN, and letp be a finite partial state ofS. The
functor DataPart(p) yielding a finite partial state ofS is defined by:

(Def. 7) DataPart(p) = p�((the carrier ofS)\ ({ICS}∪ the instruction locations ofS)).

Let N be a set, letSbe a non empty AMI overN, and letI1 be a finite partial state ofS. We say
thatI1 is data-only if and only if:

(Def. 8) domI1 misses{ICS}∪ the instruction locations ofS.

Let N be a set and letSbe a non empty AMI overN. Note that there exists a finite partial state
of Swhich is data-only.

We now state a number of propositions:

(62) For every setN and for every non empty AMISoverN and for every finite partial statep
of Sholds DataPart(p)⊆ p.

(63) For every setN and for every AMISoverN and for every finite partial statep of Sholds
ProgramPart(p)⊆ p.

(64) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
p be a finite partial state ofS, ands be a state ofS. If p⊆ s, then for every natural numberi
holds ProgramPart(p)⊆ (Computation(s))(i).

(65) For every setN and for every non empty AMISoverN and for every finite partial statep
of SholdsICS /∈ domDataPart(p).
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(66) LetSbe an IC-Ins-separated definite realistic non empty non void AMI overN andp be a
finite partial state ofS. ThenICS /∈ domProgramPart(p).

(67) For every setN and for every non empty AMISoverN and for every finite partial statep
of Sholds{ICS} misses domDataPart(p).

(68) LetSbe an IC-Ins-separated definite realistic non empty non void AMI overN andp be a
finite partial state ofS. Then{ICS} misses domProgramPart(p).

(69) For every finite partial statep of SCM holds domDataPart(p)⊆ Data-LocSCM.

(70) For every finite partial statep of SCM holds domProgramPart(p)⊆ Instr-LocSCM.

(71) For all finite partial statesp, q of Sholds domDataPart(p) misses domProgramPart(q).

(72) For every programmed finite partial statep of Sholds ProgramPart(p) = p.

(73) For every finite partial statep of S and for every instruction-locationl of S such thatl ∈
domp holdsl ∈ domProgramPart(p).

(74) Let p be a data-only finite partial state ofSandq be a finite partial state ofS. Thenp⊆ q
if and only if p⊆ DataPart(q).

(75) LetSbe an IC-Ins-separated definite realistic non empty non void AMI overN andp be a fi-
nite partial state ofS. If ICS∈domp, thenp= Start-At(IC p)+·ProgramPart(p)+·DataPart(p).

Let us considerN, Sand letI1 be a partial function from FinPartSt(S) to FinPartSt(S). We say
thatI1 is data-only if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let p be a finite partial state ofS. Supposep∈ domI1. Thenp is data-only and for every
finite partial stateq of Ssuch thatq = I1(p) holdsq is data-only.

We now state the proposition

(76) LetSbe an IC-Ins-separated definite realistic non empty non void AMI overN andp be a
finite partial state ofS. If ICS∈ domp, thenp is not programmed.

Let us considerN, let S be a non void AMI overN, let s be a state ofS, and letp be a finite
partial state ofS. Thens+·p is a state ofS.

We now state several propositions:

(77) Let i be an instruction ofSCM, s be a state ofSCM, andp be a programmed finite partial
state ofSCM. Then Exec(i,s+·p) = Exec(i,s)+·p.

(78) For every finite partial statep of Ssuch thatICS∈ domp holds Start-At(IC p)⊆ p.

(79) For every states of Sand for every instruction-locationi3 of SholdsIC s+·Start-At(i3) = i3.

(80) For every states of SCM and for every instruction-locationi3 of SCM and for every data-
locationa holdss(a) = (s+·Start-At(i3))(a).

(81) Let S be an IC-Ins-separated definite realistic non empty non void AMI overN, s be a
state ofS, i3 be an instruction-location ofS, anda be an instruction-location ofS. Then
s(a) = (s+·Start-At(i3))(a).

(82) For all statess, t of Sand for every setA holdss+·t�A is a state ofS.
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4. AUTONOMIC FINITE PARTIAL STATES OFSCM

We now state the proposition

(83) For every autonomic finite partial statep of SCM such that DataPart(p) 6= /0 holdsICSCM ∈
domp.

Let us note that there exists a finite partial state ofSCM which is autonomic and non pro-
grammed.

One can prove the following propositions:

(84) For every autonomic non programmed finite partial statep of SCM holdsICSCM ∈ domp.

(85) For every autonomic finite partial statep of SCM such thatICSCM ∈ domp holdsIC p ∈
domp.

(86) Letp be an autonomic non programmed finite partial state ofSCM andsbe a state ofSCM.
If p⊆ s, then for every natural numberi holdsIC (Computation(s))(i) ∈ domProgramPart(p).

(87) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states ofSCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3 be data-
locations, l1 be an instruction-location ofSCM, and I be an instruction ofSCM. If
I = CurInstr((Computation(s1))(i)), then IC (Computation(s1))(i) = IC (Computation(s2))(i) and I =
CurInstr((Computation(s2))(i)).

(88) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states of SCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3

be data-locations,l1 be an instruction-location ofSCM, and I be an instruction of
SCM. If I = CurInstr((Computation(s1))(i)), then if I = d2:=d3 and d2 ∈ domp, then
(Computation(s1))(i)(d3) = (Computation(s2))(i)(d3).

(89) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states of SCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3

be data-locations,l1 be an instruction-location ofSCM, and I be an instruction of
SCM. SupposeI = CurInstr((Computation(s1))(i)). If I = AddTo(d2,d3) andd2 ∈ domp,
then (Computation(s1))(i)(d2) + (Computation(s1))(i)(d3) = (Computation(s2))(i)(d2) +
(Computation(s2))(i)(d3).

(90) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states ofSCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3 be
data-locations,l1 be an instruction-location ofSCM, and I be an instruction ofSCM.
SupposeI = CurInstr((Computation(s1))(i)). If I = SubFrom(d2,d3) and d2 ∈ domp,
then (Computation(s1))(i)(d2) − (Computation(s1))(i)(d3) = (Computation(s2))(i)(d2) −
(Computation(s2))(i)(d3).

(91) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states of SCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3

be data-locations,l1 be an instruction-location ofSCM, and I be an instruction of
SCM. SupposeI = CurInstr((Computation(s1))(i)). If I = MultBy(d2,d3) andd2 ∈ domp,
then (Computation(s1))(i)(d2) · (Computation(s1))(i)(d3) = (Computation(s2))(i)(d2) ·
(Computation(s2))(i)(d3).

(92) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states ofSCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3 be data-
locations, l1 be an instruction-location ofSCM, and I be an instruction ofSCM. Sup-
poseI = CurInstr((Computation(s1))(i)). If I = Divide(d2,d3) andd2 ∈ domp andd2 6= d3,
then (Computation(s1))(i)(d2) ÷ (Computation(s1))(i)(d3) = (Computation(s2))(i)(d2) ÷
(Computation(s2))(i)(d3).
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(93) Let p be an autonomic non programmed finite partial state ofSCM and s1, s2 be
states ofSCM. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,d2, d3 be data-
locations,l1 be an instruction-location ofSCM, andI be an instruction ofSCM. Suppose
I = CurInstr((Computation(s1))(i)). If I = Divide(d2,d3) andd3 ∈ domp andd2 6= d3, then
(Computation(s1))(i)(d2) mod (Computation(s1))(i)(d3) = (Computation(s2))(i)(d2) mod
(Computation(s2))(i)(d3).

(94) Let p be an autonomic non programmed finite partial state ofSCM ands1, s2 be states
of SCM. Supposep⊆ s1 and p⊆ s2. Let i be a natural number,d2, d3 be data-locations,
l1 be an instruction-location ofSCM, and I be an instruction ofSCM. SupposeI =
CurInstr((Computation(s1))(i)). If I = if d2 = 0 goto l1 and l1 6= Next(IC (Computation(s1))(i)),
then(Computation(s1))(i)(d2) = 0 iff (Computation(s2))(i)(d2) = 0.

(95) Let p be an autonomic non programmed finite partial state ofSCM ands1, s2 be states
of SCM. Supposep⊆ s1 and p⊆ s2. Let i be a natural number,d2, d3 be data-locations,
l1 be an instruction-location ofSCM, and I be an instruction ofSCM. SupposeI =
CurInstr((Computation(s1))(i)). If I = if d2 > 0 goto l1 and l1 6= Next(IC (Computation(s1))(i)),
then(Computation(s1))(i)(d2) > 0 iff (Computation(s2))(i)(d2) > 0.

(96) For every finite partial statep of SCM holds DataPart(p) = p�Data-LocSCM.

(97) For every finite partial statef of SCM holds f is data-only iff domf ⊆ Data-LocSCM.
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