
JOURNAL OF FORMALIZED MATHEMATICS

Volume4, Released 1992, Published 2003

Inst. of Computer Science, Univ. of Białystok

A Mathematical Model of CPU

Yatsuka Nakamura
Shinshu University

Nagano

Andrzej Trybulec
Warsaw University

Białystok

Summary. This paper is based on a previous work of the first author [13] in which a
mathematical model of the computer has been presented. The model deals with random access
memory, such as RASP of C. C. Elgot and A. Robinson [12], however, it allows for a more
realistic modeling of real computers. This new model of computers has been named by the
author (Y. Nakamura, [13]) Architecture Model for Instructions (AMI). It is more developed
than previous models, both in the description of hardware (e.g., the concept of the program
counter, the structure of memory) as well as in the description of instructions (instruction
codes, addresses). The structure of AMI over an arbitrary collection of mathematical domains
N consists of:

- a non-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,

- a non-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element being an instruction code
and the second a finite sequence in which members are either objects of the AMI or
elements of one of the domains included in N,

- a function that assigns to every object of AMI its kind that is eitheran instructionor an
instruction locationor an element of N,

- a function that assigns to every instruction its execution that is again a function mapping
states of AMI into the set of states.

By a state of AMI we mean a function that assigns to every object of AMI an element of
the same kind. In this paper we develop the theory of AMI. Some properties of AMI are
introduced ensuring it to have some properties of real computers:

- a von Neumann AMI, in which only addresses to instruction locations are stored in the
program counter,

- data oriented, those in which instructions cannot be stored in data locations,

- halting, in which the execution of the halt instruction is the identity mapping of the states
of an AMI,

- steady programmed, the condition in which the contents of the instruction locations do not
change during execution,

- definite, a property in which only instructions may be stored in instruction locations.

We present an example of AMI called a Small Concrete Model which has been constructed in
[13]. The Small Concrete Model has only one kind of data: integers and a set of instructions,
small but sufficient to cope with integers.

MML Identifier: AMI_1.

WWW: http://mizar.org/JFM/Vol4/ami_1.html

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol4/ami_1.html

A MATHEMATICAL MODEL OF CPU 2

The articles [15], [8], [17], [16], [2], [18], [5], [6], [11], [1], [9], [14], [10], [3], [4], and [7] provide
the notation and terminology for this paper.

1. PRELIMINARIES

The following four propositions are true:

(1) N 6= Z.

(2) For all setsa, b holds 16= 〈〈a, b〉〉.

(3) For all setsa, b holds 26= 〈〈a, b〉〉.

(5)1 For all setsa, b, c, d such thata 6= b holds∏[a 7−→ {c},b 7−→ {d}] = {[a 7−→ c,b 7−→ d]}.

Let I1 be a set. We say thatI1 has non empty elements if and only if:

(Def. 1) /0 /∈ I1.

Let us observe that there exists a set which is non empty and has non empty elements.
Let A be a non empty set. Note that{A} has non empty elements. LetB be a non empty set.

Note that{A,B} has non empty elements.
Let A, B be sets with non empty elements. One can check thatA∪B has non empty elements.

2. GENERAL CONCEPTS

In the sequelN is a set with non empty elements.
Let N be a set. We consider AMI’s overN as extensions of 1-sorted structure as systems
〈 a carrier, an instruction counter, instruction locations, instruction codes, instructions, a object

kind, a execution〉,
where the carrier is a set, the instruction counter is an element of the carrier, the instruction locations
constitute a subset of the carrier, the instruction codes constitute a non empty set, the instructions
constitute a non empty subset of[: the instruction codes, (

⋃
N∪ the carrier)∗ :], the object kind is a

function from the carrier intoN∪{the instructions, the instruction locations}, and the execution is
a function from the instructions into(∏ the object kind)∏ the object kind.

Let N be a set. The functorAMI t yielding a strict AMI overN is defined by the conditions
(Def. 2).

(Def. 2) The carrier of(AMI t) = {0,1} and the instruction counter of(AMI t) = 0 and the instruc-
tion locations of(AMI t) = {1} and the instruction codes of(AMI t) = {0} and the instructions
of (AMI t) = {〈〈0, /0〉〉} and the object kind of(AMI t) = [0 7−→ {1},1 7−→ {〈〈0, /0〉〉}] and the
execution of(AMI t) = {〈〈0, /0〉〉} 7−→ id∏[07−→{1},17−→{〈〈0, /0〉〉}].

Let N be a set and letSbe an AMI overN. We say thatS is void if and only if:

(Def. 3) The instruction locations ofSare empty.

Let N be a set. Note thatAMI t is non empty and non void.
Let N be a set. Note that there exists an AMI overN which is non empty and non void.
Let N be a set and letSbe a non empty AMI overN. Note that the carrier ofS is non empty.
Let N be a set and letSbe a non void AMI overN. Observe that the instruction locations ofS is

non empty.
Let N be a set and letSbe a non empty AMI overN. An object ofS is an element ofS.
Let N be a set and letSbe a non empty non void AMI overN. An instruction-location ofS is an

element of the instruction locations ofS.
Let N be a set and letSbe an AMI overN. An instruction ofS is an element of the instructions

of S.
Let N be a set and letSbe a non empty AMI overN. The functorICS yields an object ofSand

is defined as follows:
1 The proposition (4) has been removed.

A MATHEMATICAL MODEL OF CPU 3

(Def. 5)2 ICS = the instruction counter ofS.

Let N be a set, letS be a non empty AMI overN, and leto be an object ofS. The functor
ObjectKind(o) yields an element ofN∪{the instructions ofS, the instruction locations ofS} and is
defined as follows:

(Def. 6) ObjectKind(o) = (the object kind ofS)(o).

Let f be a function. Observe that∏ f is functional.
Let A be a set, letB be a set with non empty elements, and letf be a function fromA into B.

Note that∏ f is non empty.
Let N be a set and letSbe an AMI overN. A state ofS is an element of∏ (the object kind ofS).
Let N be a set with non empty elements, letSbe a non void AMI overN, let I be an instruction

of S, and lets be a state ofS. The functor Exec(I ,s) yielding a state ofS is defined as follows:

(Def. 7) Exec(I ,s) = (the execution ofS)(I)(s).

Let us considerN, let Sbe a non void AMI overN, and letI be an instruction ofS. We say that
I is halting if and only if:

(Def. 8) For every states of Sholds Exec(I ,s) = s.

Let us considerN and letSbe a non void AMI overN. We say thatS is halting if and only if:

(Def. 9) There exists an instructionI of Ssuch thatI is halting and for every instructionJ of Ssuch
thatJ is halting holdsI = J.

In the sequelE is a set.
The following proposition is true

(6) AMI t is halting.

Let us considerN. Note thatAMI t is halting.
Let us considerN. One can verify that there exists a non void AMI overN which is halting.
Let us considerN and letS be a halting non void AMI overN. The functorhaltS yields an

instruction ofSand is defined as follows:

(Def. 10) There exists an instructionI of Ssuch thatI is halting andhaltS = I .

Let us considerN and letS be a halting non void AMI overN. One can check thathaltS is
halting.

Let N be a set and letI1 be a non empty AMI overN. We say thatI1 is IC-Ins-separated if and
only if:

(Def. 11) ObjectKind(IC (I1)) = the instruction locations ofI1.

Let N be a set and letI1 be an AMI overN. We say thatI1 is data-oriented if and only if:

(Def. 12) (The object kind ofI1)−1({the instructions ofI1})⊆ the instruction locations ofI1.

Let N be a set with non empty elements and letI1 be a non empty non void AMI overN. We
say thatI1 is steady-programmed if and only if:

(Def. 13) For every states of I1 and for every instructioni of I1 and for every instruction-locationl
of I1 holds(Exec(i,s))(l) = s(l).

Let N be a set and letI1 be a non empty non void AMI overN. We say thatI1 is definite if and
only if:

(Def. 14) For every instruction-locationl of I1 holds ObjectKind(l) = the instructions ofI1.

Next we state several propositions:

2 The definition (Def. 4) has been removed.

A MATHEMATICAL MODEL OF CPU 4

(7) AMI t is IC-Ins-separated.

(8) AMI t is data-oriented.

(9) For all statess1, s2 of AMI t holdss1 = s2.

(10) AMI t is steady-programmed.

(11) AMI t is definite.

Let E be a set. One can verify thatAMI t is data-oriented.
Let E be a set. Observe thatAMI t is IC-Ins-separated and definite.
Let N be a set with non empty elements. Observe thatAMI t is steady-programmed.
Let E be a set. One can verify that there exists an AMI overE which is data-oriented and strict.
Let M be a set. Note that there exists a non empty non void AMI overM which is IC-Ins-

separated, data-oriented, definite, and strict.
Let us considerN. One can check that there exists a non empty non void AMI overN which is

IC-Ins-separated, data-oriented, halting, steady-programmed, definite, and strict.
Let N be a set with non empty elements, letSbe an IC-Ins-separated non empty non void AMI

overN, and lets be a state ofS. The functorIC s yields an instruction-location ofSand is defined
by:

(Def. 15) ICs = s(ICS).

3. PRELIMINARIES

We adopt the following convention:x, y, z, A, B denote sets,f , g, h denote functions, andi, j, k
denote natural numbers.

The following propositions are true:

(13)3 For every functionf holdsπ1(dom f × rng f)◦ f = dom f .

(14) If f ≈ g and〈〈x, y〉〉 ∈ f and〈〈x, z〉〉 ∈ g, theny = z.

(15) Suppose for everyx such thatx∈ A holdsx is a function and for all functionsf , g such that
f ∈ A andg∈ A holds f ≈ g. Then

⋃
A is a function.

(16) If dom f ⊆ A∪B, then f �A+· f �B = f .

(18)4 For all setsx1, x2, y1, y2 holds[x1 7−→ y1,x2 7−→ y2] = (x1 7−→. y1)+·(x2 7−→. y2).

(19) For allx, y holdsx7−→. y = {〈〈x, y〉〉}.

(20) For all setsa, b, c holds[a 7−→ b,a 7−→ c] = a7−→. c.

(21) For every functionf holds domf is finite iff f is finite.

(22) If x∈ ∏ f , thenx is a function.

4. SUPERPRODUCTS

Let f be a function. The functor∏· f yields a set and is defined by:

(Def. 16) x ∈ ∏· f iff there existsg such thatx = g and domg⊆ dom f and for everyx such that
x∈ domg holdsg(x) ∈ f (x).

Let f be a function. Note that∏· f is functional and non empty.
We now state a number of propositions:

3 The proposition (12) has been removed.
4 The proposition (17) has been removed.

A MATHEMATICAL MODEL OF CPU 5

(25)5 If g∈ ∏· f , then domg⊆ dom f and for everyx such thatx∈ domg holdsg(x) ∈ f (x).

(26) /0 ∈ ∏· f .

(27) ∏ f ⊆ ∏· f .

(28) If x∈ ∏· f , thenx is a partial function from domf to
⋃

rng f .

(29) If g∈ ∏ f andh∈ ∏· f , theng+·h∈ ∏ f .

(30) If ∏ f 6= /0, theng∈ ∏· f iff there existsh such thath∈ ∏ f andg≤ h.

(31) ∏· f ⊆ dom f→̇
⋃

rng f .

(32) If f ⊆ g, then∏· f ⊆ ∏·g.

(33) ∏· /0 = { /0}.

(34) A→̇B = ∏·(A 7−→ B).

(35) For all non empty setsA, B and for every functionf from A into B holds∏· f = ∏·(f �{x;x
ranges over elements ofA: f (x) 6= /0}).

(36) If x∈ dom f andy∈ f (x), thenx7−→. y∈ ∏· f .

(37) ∏· f = { /0} iff for every x such thatx∈ dom f holds f (x) = /0.

(38) If A⊆ ∏· f and for all functionsh1, h2 such thath1 ∈ A andh2 ∈ A holdsh1 ≈ h2, then⋃
A∈ ∏· f .

(39) If g≈ h andg∈ ∏· f andh∈ ∏· f , theng∪h∈ ∏· f .

(40) If g⊆ h andh∈ ∏· f , theng∈ ∏· f .

(41) If g∈ ∏· f , theng�A∈ ∏· f .

(42) If g∈ ∏· f , theng�A∈ ∏·(f �A).

(43) If h ∈ ∏·(f+·g), then there exist functionsf ′, g′ such thatf ′ ∈ ∏· f andg′ ∈ ∏·g and
h = f ′+·g′.

(44) For all functionsf ′, g′ such that domg misses domf ′ \domg′ and f ′ ∈ ∏· f andg′ ∈ ∏·g
holds f ′+·g′ ∈ ∏·(f+·g).

(45) For all functionsf ′, g′ such that domf ′ misses domg\domg′ and f ′ ∈ ∏· f andg′ ∈ ∏·g
holds f ′+·g′ ∈ ∏·(f+·g).

(46) If g∈ ∏· f andh∈ ∏· f , theng+·h∈ ∏· f .

(47) For all setsx1, x2, y1, y2 such thatx1 ∈ dom f andy1 ∈ f (x1) andx2 ∈ dom f andy2 ∈ f (x2)
holds[x1 7−→ y1,x2 7−→ y2] ∈ ∏· f .

5. GENERAL THEORY

Let us considerN, let Sbe an IC-Ins-separated definite non empty non void AMI overN, and lets
be a state ofS. The functor CurInstr(s) yielding an instruction ofS is defined by:

(Def. 17) CurInstr(s) = s(ICs).

Let us considerN, let Sbe an IC-Ins-separated definite non empty non void AMI overN, and
let s be a state ofS. The functor Following(s) yields a state ofSand is defined by:

(Def. 18) Following(s) = Exec(CurInstr(s),s).

5 The propositions (23) and (24) have been removed.

A MATHEMATICAL MODEL OF CPU 6

Let us considerN, let Sbe an IC-Ins-separated definite non empty non void AMI overN, and
let s be a state ofS. The functor Computation(s) yielding a function fromN into ∏ (the object kind
of S) is defined as follows:

(Def. 19) (Computation(s))(0)= sand for everyi holds(Computation(s))(i+1)= Following((Computation(s))(i)).

Let us considerN, let Sbe a non void AMI overN, let f be a function fromN into ∏ (the object
kind of S), and let us considerk. Then f (k) is a state ofS.

Let us considerN, let Sbe a halting IC-Ins-separated definite non empty non void AMI overN,
and letI1 be a state ofS. We say thatI1 is halting if and only if:

(Def. 20) There existsk such that CurInstr((Computation(I1))(k)) = haltS.

Let N be a set and letI1 be an AMI overN. We say thatI1 is realistic if and only if:

(Def. 21) The instructions ofI1 6= the instruction locations ofI1.

The following proposition is true

(48) Let S be an IC-Ins-separated definite non empty non void AMI overE. SupposeS is
realistic. Then it is not true that there exists an instruction-locationl of Ssuch thatICS = l .

In the sequelS is an IC-Ins-separated definite non empty non void AMI overN ands is a state
of S.

One can prove the following two propositions:

(51)6 For everyk holds(Computation(s))(i +k) = (Computation((Computation(s))(i)))(k).

(52) Supposei ≤ j. Let given N, S be a halting IC-Ins-separated definite non empty non
void AMI over N, and s be a state ofS. If CurInstr((Computation(s))(i)) = haltS, then
(Computation(s))(j) = (Computation(s))(i).

Let us considerN, let Sbe a halting IC-Ins-separated definite non empty non void AMI overN,
and lets be a state ofS. Let us assume thats is halting. The functor Result(s) yielding a state ofS
is defined by:

(Def. 22) There existsk such that Result(s) = (Computation(s))(k) and CurInstr(Result(s)) = haltS.

Next we state the proposition

(53) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
s be a state ofS, andi be an instruction-location ofS. Thens(i) = (Following(s))(i).

Let us considerN, let Sbe a definite non empty non void AMI overN, let s be a state ofS, and
let l be an instruction-location ofS. Thens(l) is an instruction ofS.

One can prove the following four propositions:

(54) Let S be a steady-programmed IC-Ins-separated definite non empty non void AMI
over N, s be a state ofS, i be an instruction-location ofS, and givenk. Then s(i) =
(Computation(s))(k)(i).

(55) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN
andsbe a state ofS. Then(Computation(s))(k+1)= Exec(s(IC (Computation(s))(k)),(Computation(s))(k)).

(56) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI
over N, s be a state ofS, and givenk. If s(IC (Computation(s))(k)) = haltS, then Result(s) =
(Computation(s))(k).

(57) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI
overN andsbe a state ofS. If there existsk such thats(IC (Computation(s))(k)) = haltS, then for
everyi holds Result(s) = Result((Computation(s))(i)).

Let us considerN, let Sbe a non empty non void AMI overN, and leto be an object ofS. Note
that ObjectKind(o) is non empty.

6 The propositions (49) and (50) have been removed.

A MATHEMATICAL MODEL OF CPU 7

6. FINITE SUBSTATES

Let N be a set and letS be an AMI overN. The functor FinPartSt(S) yielding a subset of∏· (the
object kind ofS) is defined as follows:

(Def. 23) FinPartSt(S) = {p; p ranges over elements of∏· (the object kind ofS): p is finite}.

Let N be a set and letSbe an AMI overN. An element of∏· (the object kind ofS) is said to be
a finite partial state ofS if:

(Def. 24) It is finite.

Let us considerN, let Sbe an IC-Ins-separated definite non empty non void AMI overN, and
let I1 be a finite partial state ofS. We say thatI1 is autonomic if and only if:

(Def. 25) For all statess1, s2 of S such that I1 ⊆ s1 and I1 ⊆ s2 and for every i holds
(Computation(s1))(i)�domI1 = (Computation(s2))(i)�domI1.

Let us considerN, let Sbe a halting IC-Ins-separated definite non empty non void AMI overN,
and letI1 be a finite partial state ofS. We say thatI1 is halting if and only if:

(Def. 26) For every states of Ssuch thatI1 ⊆ s holdss is halting.

Let us considerN and letI1 be an IC-Ins-separated definite non empty non void AMI overN.
We say thatI1 is programmable if and only if:

(Def. 27) There exists a finite partial state ofI1 which is non empty and autonomic.

Next we state two propositions:

(58) LetSbe an IC-Ins-separated definite non empty non void AMI overN, A, B be sets, andl1,
l2 be objects ofS. Suppose ObjectKind(l1) = A and ObjectKind(l2) = B. Let a be an element
of A andb be an element ofB. Then[l1 7−→ a, l2 7−→ b] is a finite partial state ofS.

(59) LetSbe an IC-Ins-separated definite non empty non void AMI overN, A be a set, andl1
be an object ofS. Suppose ObjectKind(l1) = A. Let a be an element ofA. Thenl1 7−→. a is a
finite partial state ofS.

Let us considerN, let Sbe an IC-Ins-separated definite non empty non void AMI overN, let l1
be an object ofS, and leta be an element of ObjectKind(l1). Thenl1 7−→. a is a finite partial state of
S.

Let us considerN, let Sbe an IC-Ins-separated definite non empty non void AMI overN, let l1,
l2 be objects ofS, let a be an element of ObjectKind(l1), and letb be an element of ObjectKind(l2).
Then[l1 7−→ a, l2 7−→ b] is a finite partial state ofS.

The following propositions are true:

(60) AMI t is realistic.

(61) AMI t is programmable.

Let us considerE. Note thatAMI t is realistic.
Let us considerN. Note thatAMI t is programmable.
Let us considerE. Observe that there exists an AMI overE which is data-oriented, realistic, and

strict.
Let M be a set. One can verify that there exists a non empty non void AMI overM which is

data-oriented, realistic, strict, IC-Ins-separated, and definite.
Let us considerN. Note that there exists an IC-Ins-separated definite non empty non void AMI

overN which is data-oriented, halting, steady-programmed, realistic, programmable, and strict.
We now state two propositions:

(62) LetSbe a non void AMI overN, s be a state ofS, andp be a finite partial state ofS. Then
s�domp is a finite partial state ofS.

A MATHEMATICAL MODEL OF CPU 8

(63) For every setN and for every AMISoverN holds /0 is a finite partial state ofS.

Let us considerN and letS be a programmable IC-Ins-separated definite non empty non void
AMI over N. Observe that there exists a finite partial state ofSwhich is non empty and autonomic.

Let N be a set, letSbe an AMI overN, and let f , g be finite partial states ofS. Then f+·g is a
finite partial state ofS.

7. PREPROGRAMS

The following propositions are true:

(64) LetS be a halting realistic IC-Ins-separated definite non empty non void AMI overN, l3
be an instruction-location ofS, and l be an element of ObjectKind(ICS). Supposel = l3.
Let h be an element of ObjectKind(l3). If h = haltS, then for every states of S such that
[ICS 7−→ l , l3 7−→ h]⊆ s holds CurInstr(s) = haltS.

(65) LetSbe a halting realistic IC-Ins-separated definite non empty non void AMI overN, l3 be
an instruction-location ofS, andl be an element of ObjectKind(ICS). Supposel = l3. Let h
be an element of ObjectKind(l3). If h = haltS, then[ICS 7−→ l , l3 7−→ h] is halting.

(66) LetS be a realistic halting IC-Ins-separated definite non empty non void AMI overN, l3
be an instruction-location ofS, andl be an element of ObjectKind(ICS). Supposel = l3. Let
h be an element of ObjectKind(l3). Supposeh = haltS. Let s be a state ofS. If [ICS 7−→
l , l3 7−→ h]⊆ s, then for everyi holds(Computation(s))(i) = s.

(67) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN, l3 be
an instruction-location ofS, andl be an element of ObjectKind(ICS). Supposel = l3. Let h
be an element of ObjectKind(l3). If h = haltS, then[ICS 7−→ l , l3 7−→ h] is autonomic.

Let us considerN and letSbe a realistic halting IC-Ins-separated definite non empty non void
AMI over N. One can check that there exists a finite partial state ofS which is autonomic and
halting.

Let us considerN and letSbe a realistic halting IC-Ins-separated definite non empty non void
AMI over N. A pre-program ofS is an autonomic halting finite partial state ofS.

Let us considerN, let Sbe a realistic halting IC-Ins-separated definite non empty non void AMI
overN, and letsbe a finite partial state ofS. Let us assume thats is a pre-program ofS. The functor
Result(s) yielding a finite partial state ofS is defined as follows:

(Def. 28) For every states′ of Ssuch thats⊆ s′ holds Result(s) = Result(s′)�doms.

8. COMPUTABILITY

Let us considerN, let S be a realistic halting IC-Ins-separated definite non empty non void AMI
overN, let p be a finite partial state ofS, and letF be a function. We say thatp computesF if and
only if the condition (Def. 29) is satisfied.

(Def. 29) Letx be a set. Supposex∈ domF. Then there exists a finite partial states of S such that
x = s andp+·s is a pre-program ofSandF(s)⊆ Result(p+·s).

One can prove the following propositions:

(68) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN and
p be a finite partial state ofS. Thenp computes/0.

(69) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN and
p be a finite partial state ofS. Then p is a pre-program ofS if and only if p computes
/07−→. Result(p).

(70) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN and
p be a finite partial state ofS. Thenp is a pre-program ofS if and only if p computes/0 7−→. /0.

A MATHEMATICAL MODEL OF CPU 9

Let us considerN, let S be a realistic halting IC-Ins-separated definite non empty non void
AMI over N, and letI1 be a partial function from FinPartSt(S) to FinPartSt(S). We say thatI1 is
computable if and only if:

(Def. 30) There exists a finite partial statep of Ssuch thatp computesI1.

The following propositions are true:

(71) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN and
F be a partial function from FinPartSt(S) to FinPartSt(S). If F = /0, thenF is computable.

(72) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN andF
be a partial function from FinPartSt(S) to FinPartSt(S). If F = /0 7−→. /0, thenF is computable.

(73) Let S be a realistic halting IC-Ins-separated definite non empty non void AMI overN, p
be a pre-program ofS, andF be a partial function from FinPartSt(S) to FinPartSt(S). If
F = /07−→. Result(p), thenF is computable.

Let us considerN, let Sbe a realistic halting IC-Ins-separated definite non empty non void AMI
overN, and letF be a partial function from FinPartSt(S) to FinPartSt(S). Let us assume thatF is
computable. A finite partial state ofS is said to be a program ofF if:

(Def. 31) It computesF .

Let N be a set and letS be an AMI overN. An instruction type ofS is an element of the
instruction codes ofS.

Next we state three propositions:

(74) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN and
F be a partial function from FinPartSt(S) to FinPartSt(S). If F = /0, then every finite partial
state ofS is a program ofF .

(75) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI overN andF
be a partial function from FinPartSt(S) to FinPartSt(S). If F = /07−→. /0, then every pre-program
of S is a program ofF .

(76) Let S be a realistic halting IC-Ins-separated definite non empty non void AMI overN, p
be a pre-program ofS, andF be a partial function from FinPartSt(S) to FinPartSt(S). If
F = /07−→. Result(p), thenp is a program ofF .

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[2] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[4] Czesław Bylínski. Basic functions and operations on functions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/
JFM/Vol1/funct_3.html.

[5] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[6] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[7] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.

[8] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.

[9] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html

A MATHEMATICAL MODEL OF CPU 10

[10] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

[11] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[12] C.C. Elgot and A. Robinson. Random access stored-program machines, an approach to programming languages.J.A.C.M., 11(4):365–
399, Oct 1964.

[13] Yatsuka Nakamura. On a mathematical model of CPU and algorithm. Technical report, Shinshu University, Aug 1991.

[14] Andrzej Trybulec. Binary operations applied to functions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/funcop_1.html.

[15] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[16] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[17] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[18] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received October 14, 1992

Published January 2, 2004

http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	a mathematical model of cpu By yatsuka nakamura and andrzej trybulec

