JOURNAL OF FORMALIZED MATHEMATICS

Volume4,

Released 1992, Published 2003

Inst. of Computer Science, Univ. of Bialystok

A Mathematical Model of CPU

Yatsuka Nakamura Andrzej Trybulec
Shinshu University Warsaw University
Nagano Biatystok

Summary. This paper is based on a previous work of the first authdr [13] in which a
mathematical model of the computer has been presented. The model deals with random access
memory, such as RASP of C. C. Elgot and A. Robinson [12], however, it allows for a more
realistic modeling of real computers. This new model of computers has been named by the
author (Y. Nakamural [13]) Architecture Model for Instructions (AMI). It is more developed
than previous models, both in the description of hardware (e.g., the concept of the program
counter, the structure of memory) as well as in the description of instructions (instruction
codes, addresses). The structure of AMI over an arbitrary collection of mathematical domains
N consists of:

- a hon-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,
- a hon-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element being an instruction code
and the second a finite sequence in which members are either objects of the AMI or
elements of one of the domains included in N,

- a function that assigns to every object of AMI its kind that is eitherinstructionor an
instruction locationor an element of N,

- a function that assigns to every instruction its execution that is again a function mapping
states of AMI into the set of states.

By a state of AMI we mean a function that assigns to every object of AMI an element of
the same kind. In this paper we develop the theory of AMI. Some properties of AMI are
introduced ensuring it to have some properties of real computers:

- a von Neumann AMI, in which only addresses to instruction locations are stored in the
program counter,

- data oriented, those in which instructions cannot be stored in data locations,

- halting, in which the execution of the halt instruction is the identity mapping of the states
of an AMI,

- steady programmed, the condition in which the contents of the instruction locations do not
change during execution,

- definite, a property in which only instructions may be stored in instruction locations.

We present an example of AMI called a Small Concrete Model which has been constructed in
[13]. The Small Concrete Model has only one kind of data: integers and a set of instructions,
small but sufficient to cope with integers.

MML Identifier: AMI_1.

WWW: http://mizar.org/JFM/Vol4d/ami_1.html

1 © Association of Mizar Users

http://mizar.org/JFM/Vol4/ami_1.html

A MATHEMATICAL MODEL OF CPU 2

The articles([15],[[8],[1/7],[[16], [2],[[18],1b],16],[11],11],[8],[[14],11001,[[B],[[4], and 7] provide
the notation and terminology for this paper.

1. PRELIMINARIES

The following four propositions are true:
(1) N#£Z.
(2) For all sets, b holds 1+ (a, b).
(3) Forall sets, b holds 2+# (a, b).
(SE] For all sets, b, ¢, d such that # b holds[][a+— {c},b+— {d}] = {[a—— c,b+—d]}.

Letl; be a set. We say th&t has non empty elements if and only if:
(Def. 1) 0¢1;.

Let us observe that there exists a set which is non empty and has non empty elements.

Let A be a non empty set. Note thgA} has non empty elements. LBtbe a non empty set.
Note that{A,B} has non empty elements.

Let A, B be sets with non empty elements. One can check&h#B has non empty elements.

2. GENERAL CONCEPTS

In the sequeN is a set with non empty elements.

Let N be a set. We consider AMI's ové\ as extensions of 1-sorted structure as systems

(a carrier, an instruction counter, instruction locations, instruction codes, instructions, a object
kind, a execution,
where the carrier is a set, the instruction counter is an element of the carrier, the instruction locations
constitute a subset of the carrier, the instruction codes constitute a non empty set, the instructions
constitute a non empty subset[tthe instruction codeg(JN Uthe carrief*], the object kind is a
function from the carrier int&\ U {the instructionghe instruction location$, and the execution is
a function from the instructions intq] the object kindjthe ebject kind

Let N be a set. The functoAMI ; yielding a strict AMI overN is defined by the conditions
(Def. 2).

(Def. 2) The carrier ofAMI) = {0,1} and the instruction counter ¢AMI ;) = 0 and the instruc-
tion locations of AMI) = {1} and the instruction codes AMI ;) = {0} and the instructions
of (AMI¢) = {(0, 0)} and the object kind ofAMI ;) = [0 — {1},1+— {(0, 0)}] and the

execution of AMI) = {(0, 0) } — idﬂ[OH{l},l»—»{(O,@)}]'

LetN be a set and Isbe an AMI overN. We say thaBis void if and only if:
(Def. 3) The instruction locations &are empty.

Let N be a set. Note tha&iMI ; is non empty and non void.

Let N be a set. Note that there exists an AMI oxewhich is non empty and non void.

LetN be a set and Ie5be a non empty AMI oveN. Note that the carrier ddis non empty.

LetN be a set and I8 be a non void AMI ovelN. Observe that the instruction locationsis
non empty.

LetN be a set and Iesbe a non empty AMI oveN. An object ofSis an element o8.

LetN be a set and lesbe a non empty non void AMI oveM. An instruction-location oSis an
element of the instruction locations 8f

Let N be a set and I be an AMI overN. An instruction ofSis an element of the instructions
of S

Let N be a set and e be a non empty AMI ovelN. The functorC s yields an object o6and
is defined as follows:

1 The proposition (4) has been removed.

A MATHEMATICAL MODEL OF CPU 3

(Def. 5f] ICs = the instruction counter d&

Let N be a set, leS be a non empty AMI oveN, and leto be an object ofS The functor
ObjectKind o) yields an element dl U {the instructions oS, the instruction locations &} and is
defined as follows:

(Def. 6) ObjectKindo) = (the object kind of5)(0).

Let f be a function. Observe thfg f is functional.

Let A be a set, leB be a set with non empty elements, andfidte a function fromA into B.
Note that[] f is non empty.

LetN be a set and lésbe an AMI overN. A state ofSis an element of] (the object kind o).

Let N be a set with non empty elements, &te a non void AMI ovelN, let| be an instruction
of S, and letsbe a state 08 The functor Exe(d, s) yielding a state oSis defined as follows:

(Def. 7) Exe€l,s) = (the execution o8)(I)(s).

Let us consideN, let Sbe a non void AMI ovelN, and letl be an instruction 0. We say that
| is halting if and only if:

(Def. 8) For every stateof Sholds Exe¢l,s) =s.
Let us consideN and letSbhe a non void AMI oveN. We say thaBis halting if and only if:

(Def. 9) There exists an instructidrof Ssuch that is halting and for every instructiahof Ssuch
thatJ is halting holdd = J.

In the sequeE is a set.
The following proposition is true

(6) AMIis halting.

Let us consideN. Note thatAMI ; is halting.

Let us consideN. One can verify that there exists a non void AMI o%ewhich is halting.

Let us consideN and letS be a halting non void AMI oveN. The functorhalts yields an
instruction ofSand is defined as follows:

(Def. 10) There exists an instructiorof Ssuch that is halting anchalts = 1.

Let us consideN and letS be a halting non void AMI oveN. One can check thdtalts is
halting.

Let N be a set and ld be a non empty AMI oveN. We say that; is IC-Ins-separated if and
only if:

(Def. 11) ObjectKindIC ,,)) = the instruction locations df.
LetN be a set and Idy be an AMI overN. We say that; is data-oriented if and only if:
(Def. 12) (The object kind of;)~*({the instructions of; }) C the instruction locations df.

Let N be a set with non empty elements andllebe a non empty non void AMI oved. We
say that is steady-programmed if and only if:

(Def. 13) For every stateof I; and for every instruction of 1; and for every instruction-locatioin
of 11 holds(Exedi,s))(l) = s(I).

Let N be a set and Ildy be a hon empty non void AMI oved. We say that; is definite if and
only if:

(Def. 14) For every instruction-locatidrof 11 holds ObjectKindl) = the instructions of;.

Next we state several propositions:

2 The definition (Def. 4) has been removed.

A MATHEMATICAL MODEL OF CPU 4

(7) AMIis IC-Ins-separated.

(8) AMI is data-oriented.

(9) For all states;, s, of AMI ; holdss; = ;.
(10) AMI is steady-programmed.
(11) AMI ¢ is definite.

Let E be a set. One can verify thAMI ; is data-oriented.

Let E be a set. Observe thAMI is IC-Ins-separated and definite.

Let N be a set with non empty elements. Observe &Mt ; is steady-programmed.

Let E be a set. One can verify that there exists an AMI dvavhich is data-oriented and strict.

Let M be a set. Note that there exists a hon empty non void AMI dwewrhich is IC-Ins-
separated, data-oriented, definite, and strict.

Let us consideN. One can check that there exists a non empty non void AMI bivetich is
IC-Ins-separated, data-oriented, halting, steady-programmed, definite, and strict.

Let N be a set with non empty elements, 8dbe an IC-Ins-separated non empty non void AMI
overN, and lets be a state 06. The functorlCg yields an instruction-location & and is defined
by:

(Def. 15) ICs=5(ICs).

3. PRELIMINARIES

We adopt the following conventiorx, y, z, A, B denote setsf, g, h denote functions, ang j, k
denote natural numbers.
The following propositions are true:

(13 For every functionf holdsty (domf x rngf)°f = domf.
(14) If f~gand{x,y) € f and({x, 2) € g, theny=z

(15) Suppose for everysuch thak € A holdsx is a function and for all function§, g such that
f € Aandg € Aholdsf =~ g. ThenJA is a function.

(16) If domf C AUB, thenf A+ -f[B=f.

(18&] For all sets«y, X2, y1, Y2 holds[x; — y1,X2 — Yo] = (Xg——Y1)+- (Xo——Y2).
(19) Forallx, y holdsx——y = {{x, y} }.

(20) For all sets, b, cholds[a+— b,ar— c] = a——-c.

(21) For every functiorf holds dont is finite iff f is finite.

(22) Ifxe]f,thenxis a function.

4., SUPERPRODUCTS

Let f be a function. The functq] f yields a set and is defined by:

(Def. 16) x e[f iff there existsg such thatx = g and dong C domf and for everyx such that
x € domg holdsg(x) € f(x).

Let f be a function. Note thgt]" f is functional and non empty.
We now state a number of propositions:

3 The proposition (12) has been removed.
4 The proposition (17) has been removed.

A MATHEMATICAL MODEL OF CPU 5

(ZSE] If ge 7 f, then dong C domf and for every such thak € domg holdsg(x) € f(x).
(26) 0eq1f.

@1 nfemnf.

(28) Ifxe[] f,thenxis a partial function from dorfito (Jrngf.

(29) Ifgeqfandhe[] f,theng+-he]f.

(30) Iff #0,thenge [f iff there existsh such thah € [f andg < h.

(31) f Cdomf=Urngf.

(32) IffcCgthenTf<Co

(33) M0=1{0}.

(34) ASB=[](A— B).

(35) Forall non empty seis, B and for every functiorf from Ainto B holds[] f =[] (f [{x;x
ranges over elements Af f(x) # 0}).

(36) Ifxedomf andy € f(x), thenx—ye] f.
(37) 1 f = {0} iff for every x such tha € domf holds f(x) = 0.

(38) IfAC] f and for all functionshy, hy such thath; € A andhy € A holdsh; = hy, then
UAe f.

(39) Ifgr~handge[] fandhe[] f,thenguhe] f.
(40) IfgChandhe[] f,thenge] f.

(41) Ifgeq) f,thengfAe|] f.

(42) Ifgeq) f,thenglAc] (fTA).

(43) If he) (f+-9), then there exist function§’, g such thatf’ € [1 f andg € []'g and
h=f'+.¢.

(44) For all functionsf’, g’ such that dorg misses donf’\ domg’ andf’ € [f andg’ € [’ g
holdsf'+-¢' € [1(f+-0).

(45) For all functionsf’, g such that donf’ misses dorg\ domg’ andf’ € [f andg’ € [1' g
holdsf’+-g € 7 (f+-0).

(46) Ifgeq) fandhe] f,theng+he] f.
(47) Forall setxq, X2, y1, ¥2 such thak; € domf andy; € f(x1) andxp € domf andy; € f(x)

holds[x; — y1,% — Yo] € 7 f.

5. GENERAL THEORY

Let us consideN, let Sbe an IC-Ins-separated definite non empty non void AMI dveand lets
be a state 08 The functor Curlnsts) yielding an instruction o8is defined by:

(Def. 17) Curlnstfs) = s(ICs).

Let us consideN, let Sbe an IC-Ins-separated definite non empty non void AMI dveand
let sbe a state 08 The functor Followings) yields a state oSand is defined by:

(Def. 18) Followings) = ExeqCurlnsti(s),s).

5 The propositions (23) and (24) have been removed.

A MATHEMATICAL MODEL OF CPU 6

Let us consideN, let Sbe an IC-Ins-separated definite non empty non void AMI dveand
let sbe a state o8 The functor Computatiq(s) yielding a function fromN into [] (the object kind
of §) is defined as follows:

(Def. 19) (Computatiors))(0) = sand for every holds(Computatiofs))(i + 1) = Following((Computatiof(s))(i)).

Let us consideN, let Sbe a non void AMI oveN, let f be a function fronN into [] (the object
kind of S, and let us considde Thenf (k) is a state of.

Let us consideN, let Sbe a halting IC-Ins-separated definite non empty non void AMI dyer
and letl; be a state 06 We say that; is halting if and only if:

(Def. 20) There existk such that Curlnstf Computatioril1))(k)) = halts.

LetN be a set and Idy be an AMI overN. We say that; is realistic if and only if:
(Def. 21) The instructions df; # the instruction locations df.

The following proposition is true

(48) LetSbe an IC-Ins-separated definite non empty non void AMI dger SUppOSES is
realistic. Then it is not true that there exists an instruction-locdtmfrS such thalC s = 1.

In the sequebis an IC-Ins-separated definite non empty non void AMI ddaands is a state
of S
One can prove the following two propositions:

(51@ For everyk holds(Computatiofs)) (i + k) = (Computatiofi(Computatiors))(i))) (k).

(52) Supposd < j. Let given N, S be a halting IC-Ins-separated definite non empty non
void AMI over N, ands be a state oS If Curlnstr{(Computations))(i)) = halts, then
(Computatioifs))(j) = (Computatiors))(i).

Let us consideN, let She a halting IC-Ins-separated definite non empty non void AMI dyjer
and lets be a state 08 Let us assume thatis halting. The functor ResyH) yielding a state o
is defined by:

(Def. 22) There existk such that Resuls) = (Computatioifs)) (k) and CurlnstfResul{s)) = halts.

Next we state the proposition

(53) LetShbe a steady-programmed IC-Ins-separated definite non empty non void AMNover
sbe a state 08, andi be an instruction-location & Thens(i) = (Following(s))(i).

Let us consideN, let Sbe a definite non empty non void AMI ov#, let s be a state 08, and
let] be an instruction-location @& Thens(l) is an instruction oS,
One can prove the following four propositions:

(54) Let S be a steady-programmed IC-Ins-separated definite non empty non void AMI
over N, s be a state ofS, i be an instruction-location o8, and givenk. Thens(i) =
(Computatioits)) (k)(i).

(55) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMNover
andsbe a state 06. Then(Computatios)) (k+1) = Exeqs(IC (computatiors)) (k))» (COmputatiotts)) (k)).

(56) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI
over N, s be a state o5, and givenk. If S(IC computatiots))(k)) = halts, then Results) =
(Computatiorfs))(K).

(57) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI
overN andsbe a state 08. If there existk such thas(IC computatiors))(k)) = halts, then for
everyi holds Resuls) = Resulf(Computatiof(s))(i)).

Let us consideN, let Sbe a non empty non void AMI ovéM, and leto be an object of. Note
that ObjectKindo) is non empty.

6 The propositions (49) and (50) have been removed.

A MATHEMATICAL MODEL OF CPU 7

6. FINITE SUBSTATES

Let N be a set and leb be an AMI overN. The functor FinPart$§) yielding a subset of] (the
object kind ofS) is defined as follows:

(Def. 23) FinPartStS) = {p; p ranges over elements pf (the object kind of5): pis finite}.

LetN be a set and lesbe an AMI overN. An element off] (the object kind of) is said to be
a finite partial state ofif:

(Def. 24) ltis finite.

Let us consideN, let Sbe an IC-Ins-separated definite non empty non void AMI dveand
let 11 be a finite partial state &. We say that; is autonomic if and only if:

(Def. 25) For all statess;, s, of S such thatly C s; and I3 C s, and for everyi holds
(Computatiois;)) (i) fdoml; = (Computatiorisz)) (i) | domly.

Let us consideN, let She a halting IC-Ins-separated definite non empty non void AMI dier
and letl; be a finite partial state & We say that; is halting if and only if:

(Def. 26) For every stateof Ssuch that; C sholdssis halting.

Let us consideN and letl; be an IC-Ins-separated definite non empty non void AMI dver
We say that; is programmable if and only if:

(Def. 27) There exists a finite partial statelpfvhich is non empty and autonomic.
Next we state two propositions:

(58) LetSbe an IC-Ins-separated definite non empty non void AMI dveh, B be sets, anti,
I> be objects o6 Suppose ObjectKirth) = A and ObjectKindl,) = B. Leta be an element
of Aandb be an element d8. Then|[l; — a,l, — b] is a finite partial state d&.

(59) LetSbe an IC-Ins-separated definite non empty non void AMI dveA be a set, anth
be an object oB. Suppose ObjectKirh) = A. Let a be an element oA. Thenl;——ais a
finite partial state of.

Let us consideN, let Sbe an IC-Ins-separated definite non empty non void AMI dvgelet 1
be an object of, and leta be an element of ObjectKirih). Thenl;——a s a finite partial state of
S

Let us consideN, let Sbe an IC-Ins-separated definite non empty non void AMI dvglet |,
I> be objects of, leta be an element of ObjectKirit), and letb be an element of ObjectKiri).
Then[l — a,l> — b] is a finite partial state 0.

The following propositions are true:

(60) AMI ¢ is realistic.
(61) AMI is programmable.

Let us consideE. Note thatAMI ¢ is realistic.

Let us consideN. Note thatAMI is programmable.

Let us consideE. Observe that there exists an AMI olewhich is data-oriented, realistic, and
strict.

Let M be a set. One can verify that there exists a non empty non void AMI ldvesich is
data-oriented, realistic, strict, IC-Ins-separated, and definite.

Let us consideN. Note that there exists an IC-Ins-separated definite non empty non void AMI
overN which is data-oriented, halting, steady-programmed, realistic, programmable, and strict.

We now state two propositions:

(62) LetSbe anon void AMI ovelN, sbe a state o, andp be a finite partial state &. Then
sfdompis a finite partial state db.

A MATHEMATICAL MODEL OF CPU 8

(63) For every sell and for every AMISoverN holds0 is a finite partial state d&.

Let us consideN and letS be a programmable IC-Ins-separated definite non empty non void
AMI over N. Observe that there exists a finite partial stat&which is non empty and autonomic.

Let N be a set, leEbe an AMI overN, and letf, g be finite partial states & Thenf+-gis a
finite partial state of.

7. PREPROGRAMS

The following propositions are true:

(64) LetSbe a halting realistic IC-Ins-separated definite non empty non void AMI Nyés
be an instruction-location d5, andl be an element of ObjectKirftCs). Supposd = Is.
Let h be an element of ObjectKirik). If h = halts, then for every stats of S such that
[ICs—1I,I3— h] C sholds Curlnstfs) = halts.

(65) LetSbe a halting realistic IC-Ins-separated definite non empty non void AMINyeybe
an instruction-location 0§, andl be an element of ObjectKiftCs). Supposé = I3. Leth
be an element of ObjectKirik). If h= halts, then[ICs+—— I,I3 — h] is halting.

(66) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI Nyés
be an instruction-location &, andl be an element of ObjectKitCs). Suppose = I3. Let
h be an element of ObjectKiris). Supposeh = halts. Let s be a state o If [ICs—
[,I3— h] C s, then for everyi holds(Computatioits))(i) = s.

(67) LetSbe arealistic halting IC-Ins-separated definite non empty non void AMINyEybe
an instruction-location 0§, andl be an element of ObjectKiftCs). Supposé = I3. Leth
be an element of ObjectKirit}). If h = halts, then[ICs—— I,l3+— h] is autonomic.

Let us consideN and letSbe a realistic halting IC-Ins-separated definite non empty non void
AMI over N. One can check that there exists a finite partial stat8 which is autonomic and
halting.

Let us consideN and letSbe a realistic halting IC-Ins-separated definite non empty non void
AMI over N. A pre-program ofSis an autonomic halting finite partial state ®f

Let us consideN, let Sbe a realistic halting IC-Ins-separated definite non empty non void AMI
overN, and letsbe a finite partial state @. Let us assume thats a pre-program ob. The functor
Resulfs) yielding a finite partial state @ is defined as follows:

(Def. 28) For every statg of Ssuch thas C s’ holds Resulfs) = Resul{s) | doms.

8. COMPUTABILITY

Let us consideN, let Sbe a realistic halting IC-Ins-separated definite non empty non void AMI
overN, let p be a finite partial state &, and letF be a function. We say that computed- if and
only if the condition (Def. 29) is satisfied.

(Def. 29) Letx be a set. Supposec domF. Then there exists a finite partial statef S such that
x=sandp+-sis a pre-program o andF (s) C Resul{p+-s).

One can prove the following propositions:

(68) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI Kvand
p be a finite partial state & Thenp computed.

(69) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI Rvand
p be a finite partial state db. Thenp is a pre-program of if and only if p computes
0——Resultp).

(70) LetShbe a realistic halting IC-Ins-separated definite non empty non void AMI Kvand
p be a finite partial state &. Thenp is a pre-program ofif and only if p compute)——0.

A MATHEMATICAL MODEL OF CPU 9

Let us considelN, let S be a realistic halting IC-Ins-separated definite non empty non void

AMI over N, and letl; be a partial function from FinPart&) to FinPartS{S). We say that; is
computable if and only if:

(Def. 30) There exists a finite partial stgi®f Ssuch thatp computed;.

The following propositions are true:

(71) LetShbe a realistic halting IC-Ins-separated definite non empty non void AMI Kvand
F be a partial function from FinPart®) to FinPartsts). If F = 0, thenF is computable.

(72) LetSbe arealistic halting IC-Ins-separated definite non empty non void AMI\aardF
be a partial function from FinPartS) to FinPartStS). If F = 0——0, thenF is computable.

(73) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI Nygy
be a pre-program 0§, andF be a partial function from FinPart&) to FinPartsts). |If
F = 0——Resultp), thenF is computable.

Let us consideN, let Sbe a realistic halting IC-Ins-separated definite non empty non void AMI

overN, and letF be a partial function from FinPart&) to FinPartStS). Let us assume thé#t is
computable. A finite partial state &fis said to be a program &f if:

(Def. 31) It computes§.

Let N be a set and les be an AMI overN. An instruction type ofSis an element of the
instruction codes of.
Next we state three propositions:

(74) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI svand
F be a partial function from FinPartS) to FinPartStS). If F = 0, then every finite partial
state ofSis a program of-.

(75) LetSbe arealistic halting IC-Ins-separated definite non empty non void AMIs\aardF
be a partial function from FinPart&) to FinPartS{S). If F = 0——0, then every pre-program
of Sis a program of.

(76) LetSbe a realistic halting IC-Ins-separated definite non empty non void AMI Nyay
be a pre-program o8 andF be a partial function from FinPart®) to FinPartstsS). If
F = 0——Resultp), thenpis a program of-.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbBetsnal of Formalized Mathematicg, 1989./http://mizar.
org/JFM/Voll/nat_1.htmll

[2] Grzegorz Bancerek. &nig's theoremJournal of Formalized Mathematic®, 1990/http://mizar.org/JFM/Vol2/card_3.html.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite seqdewmces.of Formalized Mathematics
1,1989.http://mizar.org/JFM/Voll/finseq_1.htmll

[4] Czestaw Bylhski. Basic functions and operations on functiodsurnal of Formalized Mathematicg4, 1989.http://mizar.org/
JFM/Voll/funct_3.html,

[5] Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematic, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

[6] Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematic&, 1989/http://mizar.org/JFM/Voll/funct_|
2.htmll

[7] Czestaw Bylnski. Partial functionsJournal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/partfunl.html}

[8] Czestaw Byliski. Some basic properties of setdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html.

[9] Czestaw Bylnski. A classical first order languagdournal of Formalized Mathematicg, 1990http://mizar.org/JFM/Vol2/cqc_
lang.html,

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A MATHEMATICAL MODEL OF CPU 10

Czestaw Bylnski. The modification of a function by a function and the iteration of the composition of a fundtamal of Formalized
Mathematics2, 1990/http://mizar.orqg/JFM/Vol2/funct_4.htmll

Agata Darmochwat. Finite setournal of Formalized Mathematic$, 1989.http://mizar.org/JFM/Voll/finset_1.html}

C.C. Elgot and A. Robinson. Random access stored-program machines, an approach to programming langu@adésl1(4):365—
399, Oct 1964.

Yatsuka Nakamura. On a mathematical model of CPU and algorithm. Technical report, Shinshu University, Aug 1991.

Andrzej Trybulec. Binary operations applied to functiordgurnal of Formalized Mathematic4, 1989. http://mizar.org/JFM/
Voll/funcop_l.html,

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http: //mizar.org/JFM/
Axiomatics/tarski.html.

Andrzej Trybulec. Subsets of real numbedsurnal of Formalized Mathematicéddenda, 2003http://mizar.org/JFM/Addenda/
numbers.htmll

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/subset_1.htmll

Edmund Woronowicz. Relations and their basic propertiesirnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/relat_1.html.

Received October 14, 1992

Published January 2, 2004

http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	a mathematical model of cpu By yatsuka nakamura and andrzej trybulec

