Basic Properties of Objects and Morphisms

Beata Madras-Kobus Warsaw University Białystok

MML Identifier: ALTCAT_3.

WWW: http://mizar.org/JFM/Vol9/altcat_3.html

The articles [6], [8], [9], [1], [2], [3], [4], [7], and [5] provide the notation and terminology for this paper.

Let C be a non empty category structure with units, let o_1 , o_2 be objects of C, let A be a morphism from o_1 to o_2 , and let B be a morphism from o_2 to o_1 . We say that A is left inverse of B if and only if:

(Def. 1)
$$A \cdot B = id_{(o_2)}$$
.

We introduce B is right inverse of A as a synonym of A is left inverse of B.

Let C be a non empty category structure with units, let o_1 , o_2 be objects of C, and let A be a morphism from o_1 to o_2 . We say that A is retraction if and only if:

(Def. 2) There exists a morphism from o_2 to o_1 which is right inverse of A.

Let C be a non empty category structure with units, let o_1 , o_2 be objects of C, and let A be a morphism from o_1 to o_2 . We say that A is coretraction if and only if:

(Def. 3) There exists a morphism from o_2 to o_1 which is left inverse of A.

We now state the proposition

(1) Let C be a non empty category structure with units and o be an object of C. Then id_o is retraction and id_o is coretraction.

Let C be a category and let o_1 , o_2 be objects of C. Let us assume that $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . Let us assume that A is retraction and coretraction. The functor A^{-1} yields a morphism from o_2 to o_1 and is defined by:

(Def. 4) A^{-1} is left inverse of A and A^{-1} is right inverse of A.

One can prove the following propositions:

- (2) Let C be a category and o_1 , o_2 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . If A is retraction and coretraction, then $A^{-1} \cdot A = \mathrm{id}_{(o_1)}$ and $A \cdot A^{-1} = \mathrm{id}_{(o_2)}$.
- (3) Let C be a category and o_1, o_2 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . If A is retraction and coretraction, then $(A^{-1})^{-1} = A$.
- (4) For every category C and for every object o of C holds $(id_o)^{-1} = id_o$.

Let C be a category, let o_1 , o_2 be objects of C, and let A be a morphism from o_1 to o_2 . We say that A is iso if and only if:

(Def. 5) $A \cdot A^{-1} = id_{(o_2)}$ and $A^{-1} \cdot A = id_{(o_1)}$.

Next we state three propositions:

- (5) Let C be a category, o_1 , o_2 be objects of C, and A be a morphism from o_1 to o_2 . If A is iso, then A is retraction and coretraction.
- (6) Let C be a category and o_1, o_2 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . Then A is iso if and only if A is retraction and coretraction.
- (7) Let *C* be a category, o_1 , o_2 , o_3 be objects of *C*, *A* be a morphism from o_1 to o_2 , and *B* be a morphism from o_2 to o_3 . Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_1 \rangle \neq \emptyset$ and *A* is iso and *B* is iso. Then $B \cdot A$ is iso and $(B \cdot A)^{-1} = A^{-1} \cdot B^{-1}$.

Let C be a category and let o_1 , o_2 be objects of C. We say that o_1 , o_2 are iso if and only if:

(Def. 6) $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and there exists a morphism from o_1 to o_2 which is iso.

Let us notice that the predicate o_1 , o_2 are iso is reflexive and symmetric.

We now state the proposition

(8) Let C be a category and o_1 , o_2 , o_3 be objects of C. If o_1 , o_2 are iso and o_2 , o_3 are iso, then o_1 , o_3 are iso.

Let C be a non empty category structure, let o_1 , o_2 be objects of C, and let A be a morphism from o_1 to o_2 . We say that A is mono if and only if:

(Def. 7) For every object o of C such that $\langle o, o_1 \rangle \neq \emptyset$ and for all morphisms B, C from o to o_1 such that $A \cdot B = A \cdot C$ holds B = C.

Let C be a non empty category structure, let o_1 , o_2 be objects of C, and let A be a morphism from o_1 to o_2 . We say that A is epi if and only if:

(Def. 8) For every object o of C such that $\langle o_2, o \rangle \neq \emptyset$ and for all morphisms B, C from o_2 to o such that $B \cdot A = C \cdot A$ holds B = C.

We now state a number of propositions:

- (9) Let C be an associative transitive non empty category structure and o_1 , o_2 , o_3 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 and B be a morphism from o_2 to o_3 . If A is mono and B is mono, then $B \cdot A$ is mono.
- (10) Let *C* be an associative transitive non empty category structure and o_1 , o_2 , o_3 be objects of *C*. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$. Let *A* be a morphism from o_1 to o_2 and *B* be a morphism from o_2 to o_3 . If *A* is epi and *B* is epi, then $B \cdot A$ is epi.
- (11) Let C be an associative transitive non empty category structure and o_1 , o_2 , o_3 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 and B be a morphism from o_2 to o_3 . If $B \cdot A$ is mono, then A is mono.
- (12) Let C be an associative transitive non empty category structure and o_1 , o_2 , o_3 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 and B be a morphism from o_2 to o_3 . If $B \cdot A$ is epi, then B is epi.
- (13) Let X be a non empty set and o_1 , o_2 be objects of Ens_X. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 and F be a function from o_1 into o_2 . If F = A, then A is mono iff F is one-to-one.

- (14) Let X be a non empty set with non empty elements and o_1 , o_2 be objects of Ens_X . Suppose $\langle o_1, o_2 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 and F be a function from o_1 into o_2 . If F = A, then A is epi iff F is onto.
- (15) Let C be a category and o_1 , o_2 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . If A is retraction, then A is epi.
- (16) Let C be a category and o_1 , o_2 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . If A is coretraction, then A is mono.
- (17) Let C be a category and o_1 , o_2 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 . If A is iso, then A is mono and epi.
- (18) Let *C* be a category and o_1 , o_2 , o_3 be objects of *C*. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_1 \rangle \neq \emptyset$. Let *A* be a morphism from o_1 to o_2 and *B* be a morphism from o_2 to o_3 . If *A* is retraction and *B* is retraction, then $B \cdot A$ is retraction.
- (19) Let C be a category and o_1 , o_2 , o_3 be objects of C. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_1 \rangle \neq \emptyset$. Let A be a morphism from o_1 to o_2 and B be a morphism from o_2 to o_3 . If A is coretraction and B is coretraction, then $B \cdot A$ is coretraction.
- (20) Let C be a category, o_1 , o_2 be objects of C, and A be a morphism from o_1 to o_2 . If A is retraction and mono and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$, then A is iso.
- (21) Let C be a category, o_1 , o_2 be objects of C, and A be a morphism from o_1 to o_2 . If A is coretraction and epi and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$, then A is iso.
- (22) Let *C* be a category, o_1 , o_2 , o_3 be objects of *C*, *A* be a morphism from o_1 to o_2 , and *B* be a morphism from o_2 to o_3 . Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_1 \rangle \neq \emptyset$ and $B \cdot A$ is retraction. Then *B* is retraction.
- (23) Let C be a category, o_1 , o_2 , o_3 be objects of C, A be a morphism from o_1 to o_2 , and B be a morphism from o_2 to o_3 . Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_1 \rangle \neq \emptyset$ and $B \cdot A$ is coretraction. Then A is coretraction.
- (24) Let C be a category. Suppose that for all objects o_1 , o_2 of C holds every morphism from o_1 to o_2 is retraction. Let a, b be objects of C and A be a morphism from a to b. If $\langle a, b \rangle \neq \emptyset$ and $\langle b, a \rangle \neq \emptyset$, then A is iso.

Let C be a non empty category structure with units and let o be an object of C. Note that there exists a morphism from o to o which is mono, epi, retraction, and coretraction.

Let C be a category and let o be an object of C. Note that there exists a morphism from o to o which is mono, epi, iso, retraction, and coretraction.

Let C be a category, let o be an object of C, and let A, B be mono morphisms from o to o. Note that $A \cdot B$ is mono.

Let C be a category, let o be an object of C, and let A, B be epi morphisms from o to o. One can verify that $A \cdot B$ is epi.

Let C be a category, let o be an object of C, and let A, B be iso morphisms from o to o. Observe that $A \cdot B$ is iso.

Let C be a category, let o be an object of C, and let A, B be retraction morphisms from o to o. Observe that $A \cdot B$ is retraction.

Let C be a category, let o be an object of C, and let A, B be coretraction morphisms from o to o. Note that $A \cdot B$ is coretraction.

Let C be a graph and let o be an object of C. We say that o is initial if and only if:

(Def. 9) For every object o_1 of C there exists a morphism M from o to o_1 such that $M \in \langle o, o_1 \rangle$ and $\langle o, o_1 \rangle$ is trivial.

One can prove the following two propositions:

- (25) Let *C* be a graph and *o* be an object of *C*. Then *o* is initial if and only if for every object o_1 of *C* there exists a morphism *M* from *o* to o_1 such that $M \in \langle o, o_1 \rangle$ and for every morphism M_1 from *o* to o_1 such that $M_1 \in \langle o, o_1 \rangle$ holds $M = M_1$.
- (26) For every category C and for all objects o_1 , o_2 of C such that o_1 is initial and o_2 is initial holds o_1 , o_2 are iso.

Let C be a graph and let o be an object of C. We say that o is terminal if and only if:

(Def. 10) For every object o_1 of C there exists a morphism M from o_1 to o such that $M \in \langle o_1, o \rangle$ and $\langle o_1, o \rangle$ is trivial.

Next we state two propositions:

- (27) Let C be a graph and o be an object of C. Then o is terminal if and only if for every object o_1 of C there exists a morphism M from o_1 to o such that $M \in \langle o_1, o \rangle$ and for every morphism M_1 from o_1 to o such that $M_1 \in \langle o_1, o \rangle$ holds $M = M_1$.
- (28) For every category C and for all objects o_1 , o_2 of C such that o_1 is terminal and o_2 is terminal holds o_1 , o_2 are iso.

Let C be a graph and let o be an object of C. We say that o is zero if and only if:

(Def. 11) o is initial and terminal.

One can prove the following proposition

(29) For every category C and for all objects o_1 , o_2 of C such that o_1 is zero and o_2 is zero holds o_1 , o_2 are iso.

Let C be a non empty category structure, let o_1 , o_2 be objects of C, and let M be a morphism from o_1 to o_2 . We say that M is zero if and only if the condition (Def. 12) is satisfied.

(Def. 12) Let o be an object of C. Suppose o is zero. Let A be a morphism from o_1 to o and B be a morphism from o to o_2 . Then $M = B \cdot A$.

We now state the proposition

(30) Let C be a category, o_1 , o_2 , o_3 be objects of C, M_1 be a morphism from o_1 to o_2 , and M_2 be a morphism from o_2 to o_3 . If M_1 is zero and M_2 is zero, then $M_2 \cdot M_1$ is zero.

REFERENCES

- $[1] \ \ \textit{Józef Białas. Group and field definitions. } \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/realset1.html}.$
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [5] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Categories without uniqueness of cod and dom. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/altcat_1.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received February 14, 1997

Published January 2, 2004