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Summary. We continue the formalization of the category theory.
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The articles([14],[[5],[[10],[[20],[15],[[8],[[4],[[2],[18],[[1],([8],(¥],1[9], [[5], [16], [12], [18],[17],
[10], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following proposition is true
(1) For all sets<y, X and for all setsy, az holds[: X; — a3, Xo— a2 ] = [ X1, X2 — (&,
az).
Let| be a set. One can check tlatis function yielding.
Next we state two propositions:
(2) For all functionsf, g holds~\(g- f) =g- f.
(3) For all functionsf, g, h holds~(f-[g, h]) =~f-[h, g].
Let f be a function yielding function. Observe thatf is function yielding.
Next we state the proposition

(4) Letl be a set and\, B, C be many sorted sets indexed bySupposé\ is transformable to
B. Let F be a many sorted function frodinto B andG be a many sorted function froB

intoC. ThenGoF is a many sorted function fror into C.

Let| be a set and leA be a many sorted set indexed ply; | ]. ThenAis a many sorted set

indexed by 1, I ].
Next we state the proposition

(5) Letly be a set|, be a non empty sef, be a function fron; into I, B, C be many sorted
sets indexed by,, andG be a many sorted function frof into C. ThenG- f is a many

sorted function fronB- f intoC- f.

Letl be a set, leA, Bbe many sorted sets indexed[by | ], and letF be a many sorted function
from Aiinto B. Then~F is a many sorted function frommA into .~\B.
Next we state the proposition
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(6) Letly, I2 be non empty setd be a many sorted set indexed ply, 123, 01 be an element
of 11, andoy be an element db. Then(\~\M)(0y, 01) = M(01, 02).

Letl; be a set and let, g be many sorted functions indexed hy Thengo f is a many sorted
function indexed by;.

2. AN AUXILIARY NOTION

Let f, g be functions. The predicateC g is defined as follows:
(Def. 1) domf C domg and for every seitsuch thai € domf holdsf (i) C g(i).

Let us note that the predicafeC g is reflexive.
Letl, J be sets, leA be a many sorted set indexed hyand letB be a many sorted set indexed
by J. Let us observe that C B if and only if:

(Def. 2) | CJand for every setsuch thai € | holdsA(i) C B(i).
Next we state three propositions:

(8H Letl, J be setsA be a many sorted set indexed hyandB be a many sorted set indexed
by J. If ACBandB C A thenA=B.

(9) Letl, J, K be setsAbe a many sorted set indexed IgyB be a many sorted set indexed by
J, andC be a many sorted set indexed Ky If AC BandB C C, thenACC.

(10) Letl be a setA be a many sorted set indexed hyandB be a many sorted set indexed by
I. ThenAC Bifand only if AC B.

3. ABIT OF LAMBDA CALCULUS

In this article we present several logical schemes. The sclfingletonsleals with a non empty
set4, a unary functorf yielding a set, and a unary predicaeand states that:
{{o0, ¥ (0));0ranges over elements &f: P[0} is a function
for all values of the parameters.
The schem®omOnSingletondeals with a non empty set, a function8, a unary functorf
yielding a set, and a unary predica®eand states that:
dom = {0; 0 ranges over elements &f: P[o]}
provided the following condition is met:
e B={(0, F(0));0ranges over elements &f: P[0]}.
The schemé&alOnSingletonsleals with a non empty set, a function8, an element” of 4, a
unary functor¥ yielding a set, and a unary predicateand states that:
B(C) = F(C)
provided the parameters have the following properties:
e B={(o, F(0));0ranges over elements &f: P[o]}, and
o P[(C].

4. MORE ON OLD CATEGORIES

The following propositions are true:

(11) For every categor@ and for all objects, j, k of C holds[:hom(j,k), hom(i, j) ] C dom (the
composition ofC).

(12) For every categonyfC and for all objectsi, j, k of C holds (the composition of
C)°hom(j, k), hom(, j)] C hom(i,K).

1 The proposition (7) has been removed.
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LetC be a category structure. The functor Homgsfielding a many sorted set indexed bhe
objects ofC, the objects o€ is defined as follows:

(Def. 3) For all objects, j of C holds HomSets(i, j) = hom(i, j).

We now state the proposition
(13) For every categor@ and for every objeatof C holds id € HomSets (i, i).

Let C be a category. The functor Compositjoyields a binary composition of HomSetand
is defined as follows:

(Def. 4) For all objectsi, j, k of C holds Compositioa(i, j, k) = (the composition of
C)IHomSets(j, k), HomSets(i, j) .

The following propositions are true:

(14) LetC be a category and j, k be objects of. Suppose hoff, j) #~ 0 and honfj,k) =~ 0.
Let f be a morphism fron to j andg be a morphism fronj to k. Then Compositiog(i, j,

(15) For every categor@ holds Compositiog is associative.

(16) For every categor@ holds Compositiog has left units and right units.

5. TRANSFORMING AN OLD CATEGORY INTO A NEW ONE

LetC be a category. The functor Altg) yields a strict non empty category structure and is defined
by:

(Def. 5) Alter{C) = (the objects o€, HomSets, Compositiog,).

The following three propositions are true:

(17) For every categor@ holds AltefC) is associative.
(18) For every categor@ holds AltefC) has units.
(19) For every categor@ holds Alter(C) is transitive.

LetC be a category. One can verify that AIt€) is transitive and associative and has units.

6. MORE ON NEW CATEGORIES

Let us observe that there exists a graph which is non empty and strict.
LetC be a graph. We say th@tis reflexive if and only if:

(Def. 6) For every set such thai € the carrier ofC holds (the arrows of)(x, X) # 0.
LetC be a non empty graph. Let us observe ta reflexive if and only if:
(Def. 7) For every objeab of C holds (o, 0) # 0.

Let C be a non empty transitive category structure. Let us observe&tigmassociative if and
only if the condition (Def. 8) is satisfied.

(Def. 8) Letos, 02, 03, 04 be objects o€, f be a morphism frono; to 0y, g be a morphism frono,
to 03, andh be a morphism fronog to 04. If (01,02) # 0 and{02,03) # 0 and(03,04) # 0,
then(h-g)-f=h-(g-f).

Let C be a non empty category structure. Let us observeGhlaas units if and only if the
condition (Def. 9) is satisfied.
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(Def. 9) Leto be an object of. Then
() (0,0)#0,and

(i) there exists a morphismfrom o to o such that for every objeat of C and for every
morphismm’ from o’ to o and for every morphisrm” from o to ¢’ holds if (0/,0) # 0, then
i-m =m and if(0,0') # 0, thenm”-i =",

Let us note that every non empty category structure which has units is also reflexive.
One can verify that there exists a graph which is non empty and reflexive.
Let us observe that there exists a category structure which is non empty and reflexive.

7. THE EMPTY CATEGORY

The strict category structufat is defined by:
(Def. 10) The carrier o@car is empty.

One can verify thabcat is empty.
Let us observe that there exists a category structure which is empty and strict.
We now state the proposition

(20) For every empty strict category structiéoldsE = Ocar.

8. SUBCATEGORIES

LetC be a category structure. A category structure is said to be a substruc@ititdatisfies the
conditions (Def. 11).
(Def. 11)(i)) The carrier of itC the carrier ofC,
(i) the arrows of itC the arrows o, and
(iii)  the composition of itC the composition o€.
In the sequeC, C;, Cy, C3 denote category structures.
One can prove the following propositions:
(21) Cis a substructure .
(22) If Cyis a substructure &, andC; is a substructure @3, thenC; is a substructure dZs.

(23) LetCy, Cy be category structures. Suppd@seis a substructure d€; andC; is a substruc-
ture ofC;. Then the category structure ©f = the category structure @b.

Let C be a category structure. Note that there exists a substruct@rgvbich is strict.
Let C be a non empty category structure andddte an object o€. The functorl1]o yields a
strict substructure o€ and is defined by the conditions (Def. 12).

(Def. 12)(i) The carrier ofJjo = {0},
(i) the arrows ofdjo = [(0,0) — (0,0)], and
(iii)  the composition ofJjo = {0, 0, 0)——(the composition of)(o, 0, 0).
In the sequeC is a non empty category structure amis an object ofC.
Next we state the proposition

(24) For every objeat’ of CI[o holdso’ = o.

LetC be a non empty category structure anddéie an object o€. One can check thaf[ois
transitive and non empty.

LetC be a non empty category structure. Observe that there exists a substru@usich is
transitive, non empty, and strict.

The following proposition is true
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(25) LetC be a transitive non empty category structure &nd D, be transitive non empty
substructures df. Suppose the carrier @, C the carrier oD, and the arrows oD; C the
arrows ofD». ThenD; is a substructure db-.

Let C be a category structure and @the a substructure &. We say thaD is full if and only
if:

(Def. 13) The arrows ob = (the arrows ofC) [ the carrier oD, the carrier oD .

Let C be a non empty category structure with units andiée a substructure &. We say that
D is id-inheriting if and only if:

(Def. 14)(i)  For every objead of D and for every objeat’ of C such thab = ¢ holds idy € (0, 0)
if D is non empty,

(i) TRUE, otherwise.

LetC be a category structure. Note that there exists a substruct@evbich is full and strict.

Let C be a non empty category structure. Observe that there exists a substrucusich is
full, non empty, and strict.

LetC be a category and letbe an object o€. Observe thatl[o is full and id-inheriting.

Let C be a category. Observe that there exists a substructu@endfich is full, id-inheriting,
non empty, and strict.

In the sequeC is a non empty transitive category structure.

The following propositions are true:

(26) LetD be a substructure &@. Suppose the carrier @ = the carrier ofC and the arrows of
D = the arrows ofC. Then the category structure Bf= the category structure @f.

(27) LetD1, D2 be non empty transitive substructures@f Suppose the carrier @1 = the
carrier ofD, and the arrows dD; = the arrows 0D,. Then the category structuref = the
category structure d..

(28) LetD be a full substructure of. Suppose the carrier @ = the carrier ofC. Then the
category structure dd = the category structure @f.

(29) LetC be a non empty category structuiebe a full non empty substructure Gf o1, 02 be
objects ofC, andps, p2 be objects oD. If 0, = p; ando, = py, then(o1,02) = (p1, P2)-

(30) For every non empty category struct@end for every non empty substructubeof C
holds every object dD is an object ofC.

Let C be a transitive non empty category structure. Observe that every substrudtuvehath
is full and non empty is also transitive.
Next we state three propositions:

(31) LetD1, D2 be full non empty substructures ©f Suppose the carrier @f; = the carrier of
D,. Then the category structure bf = the category structure @».

(32) LetC be a non empty category structuf2,be a non empty substructure ©f 01, 0p be
objects ofC, andps, p2 be objects oD. If 0; = p1 andoz = py, then(ps, p2) C (01,02).

(33) LetC be a non empty transitive category structiddye a non empty transitive substructure
of C, andps, pz, p3 be objects oD. Suppos€pi, p2) # 0 and{py, p3) # 0. Let 01, 02, 03 be
objects ofC. Suppose; = p1 ando, = pp andoz = pz. Let f be a morphism frono; to oo,

g be a morphism frono, to o3, f; be a morphism fronp; to p2, andg; be a morphism from
p2 to ps. If f = fyandg= g1, theng-f =9g;- f1.

Let C be an associative transitive non empty category structure. Observe that every non empty
substructure o€ which is transitive is also associative.
One can prove the following proposition
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(34) LetC be a non empty category structui2,be a non empty substructure ©f 01, 0, be

objects ofC, andpj, p2 be objects oD. If 0; = p; ando, = pp and(p1, p2) # 0, then every
morphism fromp; to py is a morphism frono; to 0,.

Let C be a transitive non empty category structure with units. One can verify that every non

empty substructure @ which is id-inheriting and transitive has also units.

Let C be a category. Observe that there exists a non empty substruct@evbich is id-

inheriting and transitive.

LetC be a category. A subcategory®©fis an id-inheriting transitive substructure©f
The following proposition is true

(35) LetC be a categonp) be a non empty subcategory®©fo be an object oD, andd’ be an

(1

2]
(3]

[4]

(5]

6]

[7]

8l

[0
[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

object ofC. If o= 0o, thenid, = idy .
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