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The articles [14], [6], [19], [20], [15], [3], [4], [2], [13], [1], [8], [7], [9], [5], [16], [12], [18], [17],
[10], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following proposition is true

(1) For all setsX1, X2 and for all setsa1, a2 holds[:X1 7−→ a1, X2 7−→ a2 :] = [:X1, X2 :] 7−→ 〈〈a1,
a2〉〉.

Let I be a set. One can check that0I is function yielding.
Next we state two propositions:

(2) For all functionsf , g holdsx(g· f ) = g·x f .

(3) For all functionsf , g, h holdsx( f · [:g, h:]) = x f · [:h, g:].

Let f be a function yielding function. Observe thatx f is function yielding.
Next we state the proposition

(4) Let I be a set andA, B, C be many sorted sets indexed byI . SupposeA is transformable to
B. Let F be a many sorted function fromA into B andG be a many sorted function fromB
into C. ThenG◦F is a many sorted function fromA into C.

Let I be a set and letA be a many sorted set indexed by[: I , I :]. ThenxA is a many sorted set
indexed by[: I , I :].

Next we state the proposition

(5) Let I1 be a set,I2 be a non empty set,f be a function fromI1 into I2, B, C be many sorted
sets indexed byI2, andG be a many sorted function fromB into C. ThenG · f is a many
sorted function fromB· f into C · f .

Let I be a set, letA, B be many sorted sets indexed by[: I , I :], and letF be a many sorted function
from A into B. ThenxF is a many sorted function fromxA into xB.

Next we state the proposition
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(6) Let I1, I2 be non empty sets,M be a many sorted set indexed by[: I1, I2 :], o1 be an element
of I1, ando2 be an element ofI2. Then(xM)(o2, o1) = M(o1, o2).

Let I1 be a set and letf , g be many sorted functions indexed byI1. Theng◦ f is a many sorted
function indexed byI1.

2. AN AUXILIARY NOTION

Let f , g be functions. The predicatef ⊆̇ g is defined as follows:

(Def. 1) domf ⊆ domg and for every seti such thati ∈ dom f holds f (i)⊆ g(i).

Let us note that the predicatef ⊆̇ g is reflexive.
Let I , J be sets, letA be a many sorted set indexed byI , and letB be a many sorted set indexed

by J. Let us observe thatA ⊆̇ B if and only if:

(Def. 2) I ⊆ J and for every seti such thati ∈ I holdsA(i)⊆ B(i).

Next we state three propositions:

(8)1 Let I , J be sets,A be a many sorted set indexed byI , andB be a many sorted set indexed
by J. If A ⊆̇ B andB ⊆̇ A, thenA = B.

(9) Let I , J, K be sets,A be a many sorted set indexed byI , B be a many sorted set indexed by
J, andC be a many sorted set indexed byK. If A ⊆̇ B andB ⊆̇C, thenA ⊆̇C.

(10) Let I be a set,A be a many sorted set indexed byI , andB be a many sorted set indexed by
I . ThenA ⊆̇ B if and only if A⊆ B.

3. A BIT OF LAMBDA CALCULUS

In this article we present several logical schemes. The schemeOnSingletonsdeals with a non empty
setA , a unary functorF yielding a set, and a unary predicateP , and states that:

{〈〈o, F (o)〉〉;o ranges over elements ofA : P [o]} is a function
for all values of the parameters.

The schemeDomOnSingletonsdeals with a non empty setA , a functionB, a unary functorF
yielding a set, and a unary predicateP , and states that:

domB = {o;o ranges over elements ofA : P [o]}
provided the following condition is met:

• B = {〈〈o, F (o)〉〉;o ranges over elements ofA : P [o]}.
The schemeValOnSingletonsdeals with a non empty setA , a functionB, an elementC of A , a

unary functorF yielding a set, and a unary predicateP , and states that:
B(C ) = F (C )

provided the parameters have the following properties:
• B = {〈〈o, F (o)〉〉;o ranges over elements ofA : P [o]}, and
• P [C ].

4. MORE ON OLD CATEGORIES

The following propositions are true:

(11) For every categoryC and for all objectsi, j, k of C holds[:hom( j,k), hom(i, j) :]⊆ dom(the
composition ofC).

(12) For every categoryC and for all objectsi, j, k of C holds (the composition of
C)◦[:hom( j,k), hom(i, j) :]⊆ hom(i,k).

1 The proposition (7) has been removed.
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LetC be a category structure. The functor HomSetsC yielding a many sorted set indexed by[: the
objects ofC, the objects ofC:] is defined as follows:

(Def. 3) For all objectsi, j of C holds HomSetsC(i, j) = hom(i, j).

We now state the proposition

(13) For every categoryC and for every objecti of C holds idi ∈ HomSetsC(i, i).

Let C be a category. The functor CompositionC yields a binary composition of HomSetsC and
is defined as follows:

(Def. 4) For all objects i, j, k of C holds CompositionC(i, j, k) = (the composition of
C)�[:HomSetsC( j, k), HomSetsC(i, j) :].

The following propositions are true:

(14) LetC be a category andi, j, k be objects ofC. Suppose hom(i, j) 6= /0 and hom( j,k) 6= /0.
Let f be a morphism fromi to j andg be a morphism fromj to k. Then CompositionC(i, j,
k)(g, f ) = g· f .

(15) For every categoryC holds CompositionC is associative.

(16) For every categoryC holds CompositionC has left units and right units.

5. TRANSFORMING AN OLD CATEGORY INTO A NEW ONE

LetC be a category. The functor Alter(C) yields a strict non empty category structure and is defined
by:

(Def. 5) Alter(C) = 〈the objects ofC, HomSetsC,CompositionC〉.

The following three propositions are true:

(17) For every categoryC holds Alter(C) is associative.

(18) For every categoryC holds Alter(C) has units.

(19) For every categoryC holds Alter(C) is transitive.

Let C be a category. One can verify that Alter(C) is transitive and associative and has units.

6. MORE ON NEW CATEGORIES

Let us observe that there exists a graph which is non empty and strict.
Let C be a graph. We say thatC is reflexive if and only if:

(Def. 6) For every setx such thatx∈ the carrier ofC holds (the arrows ofC)(x, x) 6= /0.

Let C be a non empty graph. Let us observe thatC is reflexive if and only if:

(Def. 7) For every objecto of C holds〈o,o〉 6= /0.

Let C be a non empty transitive category structure. Let us observe thatC is associative if and
only if the condition (Def. 8) is satisfied.

(Def. 8) Leto1, o2, o3, o4 be objects ofC, f be a morphism fromo1 to o2, g be a morphism fromo2

to o3, andh be a morphism fromo3 to o4. If 〈o1,o2〉 6= /0 and〈o2,o3〉 6= /0 and〈o3,o4〉 6= /0,
then(h·g) · f = h· (g· f ).

Let C be a non empty category structure. Let us observe thatC has units if and only if the
condition (Def. 9) is satisfied.
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(Def. 9) Leto be an object ofC. Then

(i) 〈o,o〉 6= /0, and

(ii) there exists a morphismi from o to o such that for every objecto′ of C and for every
morphismm′ from o′ to o and for every morphismm′′ from o to o′ holds if 〈o′,o〉 6= /0, then
i ·m′ = m′ and if 〈o,o′〉 6= /0, thenm′′ · i = m′′.

Let us note that every non empty category structure which has units is also reflexive.
One can verify that there exists a graph which is non empty and reflexive.
Let us observe that there exists a category structure which is non empty and reflexive.

7. THE EMPTY CATEGORY

The strict category structure/0CAT is defined by:

(Def. 10) The carrier of/0CAT is empty.

One can verify that/0CAT is empty.
Let us observe that there exists a category structure which is empty and strict.
We now state the proposition

(20) For every empty strict category structureE holdsE = /0CAT.

8. SUBCATEGORIES

Let C be a category structure. A category structure is said to be a substructure ofC if it satisfies the
conditions (Def. 11).

(Def. 11)(i) The carrier of it⊆ the carrier ofC,

(ii) the arrows of it⊆̇ the arrows ofC, and

(iii) the composition of it⊆̇ the composition ofC.

In the sequelC, C1, C2, C3 denote category structures.
One can prove the following propositions:

(21) C is a substructure ofC.

(22) If C1 is a substructure ofC2 andC2 is a substructure ofC3, thenC1 is a substructure ofC3.

(23) LetC1, C2 be category structures. SupposeC1 is a substructure ofC2 andC2 is a substruc-
ture ofC1. Then the category structure ofC1 = the category structure ofC2.

Let C be a category structure. Note that there exists a substructure ofC which is strict.
Let C be a non empty category structure and leto be an object ofC. The functor��o yields a

strict substructure ofC and is defined by the conditions (Def. 12).

(Def. 12)(i) The carrier of��o = {o},
(ii) the arrows of��o = [〈〈o,o〉〉 7→ 〈o,o〉], and

(iii) the composition of��o = 〈〈o, o, o〉〉7−→. (the composition ofC)(o, o, o).

In the sequelC is a non empty category structure ando is an object ofC.
Next we state the proposition

(24) For every objecto′ of ��o holdso′ = o.

Let C be a non empty category structure and leto be an object ofC. One can check that��o is
transitive and non empty.

Let C be a non empty category structure. Observe that there exists a substructure ofC which is
transitive, non empty, and strict.

The following proposition is true
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(25) Let C be a transitive non empty category structure andD1, D2 be transitive non empty
substructures ofC. Suppose the carrier ofD1 ⊆ the carrier ofD2 and the arrows ofD1 ⊆̇ the
arrows ofD2. ThenD1 is a substructure ofD2.

Let C be a category structure and letD be a substructure ofC. We say thatD is full if and only
if:

(Def. 13) The arrows ofD = (the arrows ofC)�[: the carrier ofD, the carrier ofD :].

LetC be a non empty category structure with units and letD be a substructure ofC. We say that
D is id-inheriting if and only if:

(Def. 14)(i) For every objecto of D and for every objecto′ of C such thato = o′ holds ido′ ∈ 〈o,o〉
if D is non empty,

(ii) TRUE, otherwise.

Let C be a category structure. Note that there exists a substructure ofC which is full and strict.
Let C be a non empty category structure. Observe that there exists a substructure ofC which is

full, non empty, and strict.
Let C be a category and leto be an object ofC. Observe that��o is full and id-inheriting.
Let C be a category. Observe that there exists a substructure ofC which is full, id-inheriting,

non empty, and strict.
In the sequelC is a non empty transitive category structure.
The following propositions are true:

(26) LetD be a substructure ofC. Suppose the carrier ofD = the carrier ofC and the arrows of
D = the arrows ofC. Then the category structure ofD = the category structure ofC.

(27) Let D1, D2 be non empty transitive substructures ofC. Suppose the carrier ofD1 = the
carrier ofD2 and the arrows ofD1 = the arrows ofD2. Then the category structure ofD1 = the
category structure ofD2.

(28) Let D be a full substructure ofC. Suppose the carrier ofD = the carrier ofC. Then the
category structure ofD = the category structure ofC.

(29) LetC be a non empty category structure,D be a full non empty substructure ofC, o1, o2 be
objects ofC, andp1, p2 be objects ofD. If o1 = p1 ando2 = p2, then〈o1,o2〉= 〈p1, p2〉.

(30) For every non empty category structureC and for every non empty substructureD of C
holds every object ofD is an object ofC.

Let C be a transitive non empty category structure. Observe that every substructure ofC which
is full and non empty is also transitive.

Next we state three propositions:

(31) LetD1, D2 be full non empty substructures ofC. Suppose the carrier ofD1 = the carrier of
D2. Then the category structure ofD1 = the category structure ofD2.

(32) LetC be a non empty category structure,D be a non empty substructure ofC, o1, o2 be
objects ofC, andp1, p2 be objects ofD. If o1 = p1 ando2 = p2, then〈p1, p2〉 ⊆ 〈o1,o2〉.

(33) LetC be a non empty transitive category structure,D be a non empty transitive substructure
of C, andp1, p2, p3 be objects ofD. Suppose〈p1, p2〉 6= /0 and〈p2, p3〉 6= /0. Let o1, o2, o3 be
objects ofC. Supposeo1 = p1 ando2 = p2 ando3 = p3. Let f be a morphism fromo1 to o2,
g be a morphism fromo2 to o3, f1 be a morphism fromp1 to p2, andg1 be a morphism from
p2 to p3. If f = f1 andg = g1, theng· f = g1 · f1.

Let C be an associative transitive non empty category structure. Observe that every non empty
substructure ofC which is transitive is also associative.

One can prove the following proposition
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(34) LetC be a non empty category structure,D be a non empty substructure ofC, o1, o2 be
objects ofC, andp1, p2 be objects ofD. If o1 = p1 ando2 = p2 and〈p1, p2〉 6= /0, then every
morphism fromp1 to p2 is a morphism fromo1 to o2.

Let C be a transitive non empty category structure with units. One can verify that every non
empty substructure ofC which is id-inheriting and transitive has also units.

Let C be a category. Observe that there exists a non empty substructure ofC which is id-
inheriting and transitive.

Let C be a category. A subcategory ofC is an id-inheriting transitive substructure ofC.
The following proposition is true

(35) LetC be a category,D be a non empty subcategory ofC, o be an object ofD, ando′ be an
object ofC. If o = o′, then ido = ido′ .
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