Examples of Category Structures

Andrzej Trybulec Warsaw University Białystok

Summary. We continue the formalization of the category theory.

MML Identifier: ALTCAT_2.

WWW: http://mizar.org/JFM/Vol8/altcat_2.html

The articles [14], [6], [19], [20], [15], [3], [4], [2], [13], [1], [8], [7], [9], [5], [16], [12], [18], [17], [10], and [11] provide the notation and terminology for this paper.

1. Preliminaries

The following proposition is true

(1) For all sets X_1, X_2 and for all sets a_1, a_2 holds $[:X_1 \longmapsto a_1, X_2 \longmapsto a_2:] = [:X_1, X_2:] \longmapsto \langle a_1, a_2 \rangle$.

Let I be a set. One can check that $\mathbf{0}_I$ is function yielding. Next we state two propositions:

- (2) For all functions f, g holds $(g \cdot f) = g \cdot f$.
- (3) For all functions f, g, h holds $(f \cdot [:g,h:]) = f \cdot [:h,g:]$.

Let f be a function yielding function. Observe that $oldsymbol{\frown} f$ is function yielding. Next we state the proposition

(4) Let I be a set and A, B, C be many sorted sets indexed by I. Suppose A is transformable to B. Let F be a many sorted function from A into B and G be a many sorted function from B into C. Then $G \circ F$ is a many sorted function from A into C.

Let I be a set and let A be a many sorted set indexed by [:I,I:]. Then $\final A$ is a many sorted set indexed by [:I,I:].

Next we state the proposition

(5) Let I_1 be a set, I_2 be a non empty set, f be a function from I_1 into I_2 , B, C be many sorted sets indexed by I_2 , and G be a many sorted function from B into C. Then $G \cdot f$ is a many sorted function from $B \cdot f$ into $C \cdot f$.

Let *I* be a set, let *A*, *B* be many sorted sets indexed by [:I,I:], and let *F* be a many sorted function from *A* into $\triangle B$. Then $\triangle F$ is a many sorted function from $\triangle A$ into $\triangle B$.

Next we state the proposition

(6) Let I_1 , I_2 be non empty sets, M be a many sorted set indexed by $[:I_1, I_2:]$, o_1 be an element of I_1 , and o_2 be an element of I_2 . Then $(\curvearrowright M)(o_2, o_1) = M(o_1, o_2)$.

Let I_1 be a set and let f, g be many sorted functions indexed by I_1 . Then $g \circ f$ is a many sorted function indexed by I_1 .

2. AN AUXILIARY NOTION

Let f, g be functions. The predicate $f \subseteq g$ is defined as follows:

(Def. 1) $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every set i such that $i \in \operatorname{dom} f$ holds $f(i) \subseteq g(i)$.

Let us note that the predicate $f \subseteq g$ is reflexive.

Let I, J be sets, let A be a many sorted set indexed by I, and let B be a many sorted set indexed by J. Let us observe that $A \subseteq B$ if and only if:

(Def. 2) $I \subseteq J$ and for every set i such that $i \in I$ holds $A(i) \subseteq B(i)$.

Next we state three propositions:

- (8)¹ Let I, J be sets, A be a many sorted set indexed by I, and B be a many sorted set indexed by J. If $A \subseteq B$ and $B \subseteq A$, then A = B.
- (9) Let I, J, K be sets, A be a many sorted set indexed by I, B be a many sorted set indexed by J, and C be a many sorted set indexed by K. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- (10) Let *I* be a set, *A* be a many sorted set indexed by *I*, and *B* be a many sorted set indexed by *I*. Then $A \subseteq B$ if and only if $A \subseteq B$.

3. A BIT OF LAMBDA CALCULUS

In this article we present several logical schemes. The scheme *OnSingletons* deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\{\langle o, \mathcal{F}(o) \rangle; o \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[o] \}$ is a function for all values of the parameters.

The scheme DomOnSingletons deals with a non empty set \mathcal{A} , a function \mathcal{B} , a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\operatorname{dom} \mathcal{B} = \{o; o \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[o]\}$ provided the following condition is met:

• $\mathcal{B} = \{ \langle o, \mathcal{F}(o) \rangle; o \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[o] \}.$

The scheme ValOnSingletons deals with a non empty set \mathcal{A} , a function \mathcal{B} , an element \mathcal{C} of \mathcal{A} , a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

$$\mathcal{B}(\mathcal{C}) = \mathcal{F}(\mathcal{C})$$

provided the parameters have the following properties:

- $\mathcal{B} = \{ \langle o, \mathcal{F}(o) \rangle; o \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[o] \}$, and
- $\mathcal{P}[\mathcal{C}]$.

4. MORE ON OLD CATEGORIES

The following propositions are true:

- (11) For every category C and for all objects i, j, k of C holds $[:hom(j,k), hom(i,j):] \subseteq dom(the composition of <math>C$).
- (12) For every category C and for all objects i, j, k of C holds (the composition of C) $^{\circ}$ [:hom(j,k), hom(i,j):] \subseteq hom(i,k).

¹ The proposition (7) has been removed.

Let C be a category structure. The functor $HomSets_C$ yielding a many sorted set indexed by [: the objects of C, the objects of C:] is defined as follows:

(Def. 3) For all objects i, j of C holds $HomSets_C(i, j) = hom(i, j)$.

We now state the proposition

(13) For every category C and for every object i of C holds $id_i \in HomSets_C(i, i)$.

Let C be a category. The functor Composition $_C$ yields a binary composition of HomSets $_C$ and is defined as follows:

(Def. 4) For all objects i, j, k of C holds $Composition_C(i, j, k) = (the composition of <math>C)$ [: $HomSets_C(j, k)$, $HomSets_C(i, j)$:].

The following propositions are true:

- (14) Let C be a category and i, j, k be objects of C. Suppose $hom(i,j) \neq \emptyset$ and $hom(j,k) \neq \emptyset$. Let f be a morphism from i to j and g be a morphism from j to k. Then $Composition_C(i,j,k)(g,f) = g \cdot f$.
- (15) For every category C holds Composition $_C$ is associative.
- (16) For every category C holds Composition_C has left units and right units.
 - 5. Transforming an old category into a new one

Let C be a category. The functor Alter(C) yields a strict non empty category structure and is defined by:

(Def. 5) Alter(C) = \langle the objects of C, HomSets $_C$, Composition $_C$ \rangle .

The following three propositions are true:

- (17) For every category C holds Alter(C) is associative.
- (18) For every category C holds Alter(C) has units.
- (19) For every category C holds Alter(C) is transitive.

Let C be a category. One can verify that Alter(C) is transitive and associative and has units.

6. More on New Categories

Let us observe that there exists a graph which is non empty and strict.

Let C be a graph. We say that C is reflexive if and only if:

(Def. 6) For every set x such that $x \in$ the carrier of C holds (the arrows of C) $(x, x) \neq \emptyset$.

Let C be a non empty graph. Let us observe that C is reflexive if and only if:

(Def. 7) For every object o of C holds $\langle o, o \rangle \neq \emptyset$.

Let C be a non empty transitive category structure. Let us observe that C is associative if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let o_1 , o_2 , o_3 , o_4 be objects of C, f be a morphism from o_1 to o_2 , g be a morphism from o_2 to o_3 , and h be a morphism from o_3 to o_4 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_4 \rangle \neq \emptyset$, then $(h \cdot g) \cdot f = h \cdot (g \cdot f)$.

Let C be a non empty category structure. Let us observe that C has units if and only if the condition (Def. 9) is satisfied.

- (Def. 9) Let o be an object of C. Then
 - (i) $\langle o, o \rangle \neq \emptyset$, and
 - (ii) there exists a morphism i from o to o such that for every object o' of C and for every morphism m' from o' to o and for every morphism m'' from o to o' holds if $\langle o', o \rangle \neq \emptyset$, then $i \cdot m' = m'$ and if $\langle o, o' \rangle \neq \emptyset$, then $m'' \cdot i = m''$.

Let us note that every non empty category structure which has units is also reflexive.

One can verify that there exists a graph which is non empty and reflexive.

Let us observe that there exists a category structure which is non empty and reflexive.

7. THE EMPTY CATEGORY

The strict category structure \emptyset_{CAT} is defined by:

(Def. 10) The carrier of \emptyset_{CAT} is empty.

One can verify that \emptyset_{CAT} is empty.

Let us observe that there exists a category structure which is empty and strict.

We now state the proposition

(20) For every empty strict category structure E holds $E = \emptyset_{CAT}$.

8. Subcategories

Let *C* be a category structure. A category structure is said to be a substructure of *C* if it satisfies the conditions (Def. 11).

- (Def. 11)(i) The carrier of it \subseteq the carrier of C,
 - (ii) the arrows of it \subseteq the arrows of C, and
 - (iii) the composition of it \subseteq the composition of C.

In the sequel C, C_1 , C_2 , C_3 denote category structures.

One can prove the following propositions:

- (21) C is a substructure of C.
- (22) If C_1 is a substructure of C_2 and C_2 is a substructure of C_3 , then C_1 is a substructure of C_3 .
- (23) Let C_1 , C_2 be category structures. Suppose C_1 is a substructure of C_2 and C_2 is a substructure of C_1 . Then the category structure of C_1 = the category structure of C_2 .

Let C be a category structure. Note that there exists a substructure of C which is strict.

Let C be a non empty category structure and let o be an object of C. The functor $\Box \upharpoonright o$ yields a strict substructure of C and is defined by the conditions (Def. 12).

- (Def. 12)(i) The carrier of $\Box \upharpoonright o = \{o\},\$
 - (ii) the arrows of $\Box \upharpoonright o = [\langle o, o \rangle \mapsto \langle o, o \rangle]$, and
 - (iii) the composition of $\Box \upharpoonright o = \langle o, o, o \rangle \mapsto$ (the composition of C)(o, o, o).

In the sequel C is a non empty category structure and o is an object of C.

Next we state the proposition

(24) For every object o' of $\Box \upharpoonright o$ holds o' = o.

Let *C* be a non empty category structure and let *o* be an object of *C*. One can check that $\Box \upharpoonright o$ is transitive and non empty.

Let *C* be a non empty category structure. Observe that there exists a substructure of *C* which is transitive, non empty, and strict.

The following proposition is true

(25) Let C be a transitive non empty category structure and D_1 , D_2 be transitive non empty substructures of C. Suppose the carrier of $D_1 \subseteq$ the carrier of D_2 and the arrows of $D_1 \subseteq$ the arrows of D_2 . Then D_1 is a substructure of D_2 .

Let C be a category structure and let D be a substructure of C. We say that D is full if and only if:

(Def. 13) The arrows of $D = (\text{the arrows of } C) \upharpoonright [\text{: the carrier of } D, \text{ the carrier of } D:].$

Let *C* be a non empty category structure with units and let *D* be a substructure of *C*. We say that *D* is id-inheriting if and only if:

- (Def. 14)(i) For every object o of D and for every object o' of C such that o = o' holds $\mathrm{id}_{o'} \in \langle o, o \rangle$ if D is non empty,
 - (ii) TRUE, otherwise.

Let *C* be a category structure. Note that there exists a substructure of *C* which is full and strict. Let *C* be a non empty category structure. Observe that there exists a substructure of *C* which is

Let C be a non empty category structure. Observe that there exists a substructure of C which is full, non empty, and strict.

Let *C* be a category and let *o* be an object of *C*. Observe that $\Box \upharpoonright o$ is full and id-inheriting.

Let C be a category. Observe that there exists a substructure of C which is full, id-inheriting, non empty, and strict.

In the sequel C is a non empty transitive category structure.

The following propositions are true:

- (26) Let D be a substructure of C. Suppose the carrier of D = the carrier of C and the arrows of D = the arrows of C. Then the category structure of D = the category structure of C.
- (27) Let D_1 , D_2 be non empty transitive substructures of C. Suppose the carrier of D_1 = the carrier of D_2 and the arrows of D_1 = the arrows of D_2 . Then the category structure of D_1 = the category structure of D_2 .
- (28) Let D be a full substructure of C. Suppose the carrier of D = the carrier of C. Then the category structure of D = the category structure of C.
- (29) Let C be a non empty category structure, D be a full non empty substructure of C, o_1 , o_2 be objects of C, and p_1 , p_2 be objects of D. If $o_1 = p_1$ and $o_2 = p_2$, then $\langle o_1, o_2 \rangle = \langle p_1, p_2 \rangle$.
- (30) For every non empty category structure C and for every non empty substructure D of C holds every object of D is an object of C.

Let *C* be a transitive non empty category structure. Observe that every substructure of *C* which is full and non empty is also transitive.

Next we state three propositions:

- (31) Let D_1 , D_2 be full non empty substructures of C. Suppose the carrier of D_1 = the carrier of D_2 . Then the category structure of D_1 = the category structure of D_2 .
- (32) Let C be a non empty category structure, D be a non empty substructure of C, o_1 , o_2 be objects of C, and p_1 , p_2 be objects of D. If $o_1 = p_1$ and $o_2 = p_2$, then $\langle p_1, p_2 \rangle \subseteq \langle o_1, o_2 \rangle$.
- (33) Let C be a non empty transitive category structure, D be a non empty transitive substructure of C, and p_1 , p_2 , p_3 be objects of D. Suppose $\langle p_1, p_2 \rangle \neq \emptyset$ and $\langle p_2, p_3 \rangle \neq \emptyset$. Let o_1 , o_2 , o_3 be objects of C. Suppose $o_1 = p_1$ and $o_2 = p_2$ and $o_3 = p_3$. Let f be a morphism from o_1 to o_2 , g be a morphism from o_2 to o_3 , f_1 be a morphism from p_1 to p_2 , and p_3 be a morphism from p_2 to p_3 . If p_3 and p_3 and p_3 be a morphism from p_3 to p_3 . If p_3 and p_3 and p_3 be a morphism from p_3 to p_3 . If p_3 and p_3 and p_3 be a morphism from p_3 to p_3 .

Let *C* be an associative transitive non empty category structure. Observe that every non empty substructure of *C* which is transitive is also associative.

One can prove the following proposition

(34) Let C be a non empty category structure, D be a non empty substructure of C, o_1 , o_2 be objects of C, and p_1 , p_2 be objects of D. If $o_1 = p_1$ and $o_2 = p_2$ and $\langle p_1, p_2 \rangle \neq \emptyset$, then every morphism from p_1 to p_2 is a morphism from o_1 to o_2 .

Let C be a transitive non empty category structure with units. One can verify that every non empty substructure of C which is id-inheriting and transitive has also units.

Let C be a category. Observe that there exists a non empty substructure of C which is idinheriting and transitive.

Let *C* be a category. A subcategory of *C* is an id-inheriting transitive substructure of *C*. The following proposition is true

(35) Let C be a category, D be a non empty subcategory of C, o be an object of D, and o' be an object of C. If o = o', then $id_o = id_{o'}$.

REFERENCES

- Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [2] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [7] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [9] Czesław Byliński. Cartesian categories. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/cat_4.html.
- [10] Artur Korniłowicz. On the group of automorphisms of universal algebra and many sorted algebra. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/autalg_1.html.
- [11] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [12] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [13] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/multop_1.html.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [15] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/meart_1.html.
- [16] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [17] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [18] Andrzej Trybulec. Categories without uniqueness of cod and dom. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/altcat_1.html.
- [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[20] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received January 22, 1996

Published January 2, 2004