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Summary. This article contains part 3 of the set of papers concerning the theory of
algebraic structures, based on the badk [3, pp. 13-15] (pages 6—8 for English edition).

First the basic structuré~, 0,1, T) is defined, wherd is a ternary operation of (three
argument operations have been introduced in the artitle [2]. Following it, the basic axioms of
aternary field are displayed, the mode is defined and its existence proved. The basic properties
of a ternary field are also contemplated there.

MML Identifier: ALGSTR_3.

WWW: http://mizar.org/JFM/Vol2/algstr_3.html

The articlesl[6],[4],[5],[[1], and 2] provide the notation and terminology for this paper.

We consider ternary field structures as extensions of zero structure as systems

( acarrier, a zero, a unity, an operatign
where the carrier is a set, the zero and the unity are elements of the carrier, and the operation is a
ternary operation on the carrier.

One can verify that there exists a ternary field structure which is non empty.

In the sequeF denotes a non empty ternary field structure.

Let us consideF. A scalar off- is an element oF .

In the sequed, b, c denote scalars d¢.

Let us consideF, a, b, c. The functorT(a, b, c) yielding a scalar of is defined as follows:

(Def. 1) T(a,b,c) = (the operation oF)(a, b, c).
Let us consideF. The functorlg yields a scalar oF and is defined as follows:
(Def. 3] 1r = the unity ofF.
The ternary operationglon R is defined as follows:
(Def. 4) For all real numbera, b, c holds Tg(a, b,c) =a-b+c.
The strict ternary field structui®; is defined as follows:
(Def.5) R;=(R,0,1,Tg).

Let us observe tha; is non empty.
Leta, b, cbe scalars oR;. The functor F(a, b, c) yields a scalar oR; and is defined as follows:

(Def. 6) T¥(a,b,c) = (the operation oR;)(a, b, c).

Next we state four propositions:

1Supported by RPBP.1I1-24.C6.
1 The definition (Def. 2) has been removed.
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(BE] For all real numbers, U, v, V' such thatu # U’ there exists a real numbg&rsuch that
u-x+v=u-x+Vv.

(Sﬂ For all scalarsy, a, v of R; and for all real numberg x, y such thatu = zanda = x and
v=yholdsT(u,a,v) = z-X+YV.

(6) 0= Og,.
(7)) 1=1p,.

Letl; be a non empty ternary field structure. We say thé ternary field-like if and only if the
conditions (Def. 7) are satisfied.

(Def. 7) Qi) # 1,) and for every scalaa of I; holdsT(a,1,),0y,)) = aand for every scalaa of
l1 holdsT(1;,),& 0,)) = aand for all scalars, b of I; holdsT(a,0,),b) = b and for all
scalarsa, b of |1 hoIdsT(0<|1),a7 b) = b and for all scalarsl, a, b of |1 there exists a scalar
of I3 such thatT(u,a,v) = b and for all scalars, a, v, V' of 11 such thatr(u,a,v) = T(u,a,V)
holdsv = Vv and for all scalars, & of I; such thata # & and for all scalarb, b’ of I;
there exist scalarg, v of 11 such thatT(u,a,v) = b andT(u,&,v) = b’ and for all scalars
u, U of I3 such that # U and for all scalars, V' of |1 there exists a scalarof 1; such that
T(u,a,v) =T(U,a,V) and for all scalars, &, u, U, v, V of I; such thatr (u,a,v) = T(U,a,V)
andT(u,d,v) =T(U,d,V) holdsa=a oru=u'.

Let us observe that there exists a non empty ternary field structure which is strict and ternary
field-like.

A ternary field is a ternary field-like non empty ternary field structure.

We adopt the following rulesk denotes a ternary field ar&l &, b, ¢, x, X, u, U, v, vV denote
scalars oF.

Next we state several propositions:

(8) Ifa#ad andT(u,a,v)=T(U,aV)andT(ua,v)=T(U,a,V), thenu=u andv=V.
(11f] 1f a# O, then for allb, ¢ there exists such thatr (a,x,b) = c.
(12) Ifa# 0 andT(a,x,b) =T(a,xX,b), thenx=X.
(13) If a# O, then for allb, c there existx such thatT(x,a,b) = c.
(14) Ifa# 0 andT(x,a,b) =T(X,a,b), thenx=X.
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3 The proposition (4) has been removed.
4 The propositions (9) and (10) have been removed.
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