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Summary. This article contains part 3 of the set of papers concerning the theory of
algebraic structures, based on the book [3, pp. 13–15] (pages 6–8 for English edition).

First the basic structure〈F,0,1,T〉 is defined, whereT is a ternary operation onF (three
argument operations have been introduced in the article [2]. Following it, the basic axioms of
a ternary field are displayed, the mode is defined and its existence proved. The basic properties
of a ternary field are also contemplated there.
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The articles [6], [4], [5], [1], and [2] provide the notation and terminology for this paper.
We consider ternary field structures as extensions of zero structure as systems
〈 a carrier, a zero, a unity, an operation〉,

where the carrier is a set, the zero and the unity are elements of the carrier, and the operation is a
ternary operation on the carrier.

One can verify that there exists a ternary field structure which is non empty.
In the sequelF denotes a non empty ternary field structure.
Let us considerF . A scalar ofF is an element ofF .
In the sequela, b, c denote scalars ofF .
Let us considerF , a, b, c. The functorT(a,b,c) yielding a scalar ofF is defined as follows:

(Def. 1) T(a,b,c) = (the operation ofF)(a, b, c).

Let us considerF . The functor1F yields a scalar ofF and is defined as follows:

(Def. 3)1 1F = the unity ofF .

The ternary operation TR onR is defined as follows:

(Def. 4) For all real numbersa, b, c holds TR(a, b, c) = a·b+c.

The strict ternary field structureRt is defined as follows:

(Def. 5) Rt = 〈R,0,1,TR〉.

Let us observe thatRt is non empty.
Let a, b, c be scalars ofRt. The functor Te(a,b,c) yields a scalar ofRt and is defined as follows:

(Def. 6) Te(a,b,c) = (the operation ofRt)(a, b, c).

Next we state four propositions:
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(3)2 For all real numbersu, u′, v, v′ such thatu 6= u′ there exists a real numberx such that
u·x+v = u′ ·x+v′.

(5)3 For all scalarsu, a, v of Rt and for all real numbersz, x, y such thatu = z anda = x and
v = y holdsT(u,a,v) = z·x+y.

(6) 0= 0Rt .

(7) 1= 1Rt .

Let I1 be a non empty ternary field structure. We say thatI1 is ternary field-like if and only if the
conditions (Def. 7) are satisfied.

(Def. 7) 0(I1) 6= 1(I1) and for every scalara of I1 holdsT(a,1(I1),0(I1)) = a and for every scalara of
I1 holdsT(1(I1),a,0(I1)) = a and for all scalarsa, b of I1 holdsT(a,0(I1),b) = b and for all
scalarsa, b of I1 holdsT(0(I1),a,b) = b and for all scalarsu, a, b of I1 there exists a scalarv
of I1 such thatT(u,a,v) = b and for all scalarsu, a, v, v′ of I1 such thatT(u,a,v) = T(u,a,v′)
holds v = v′ and for all scalarsa, a′ of I1 such thata 6= a′ and for all scalarsb, b′ of I1
there exist scalarsu, v of I1 such thatT(u,a,v) = b andT(u,a′,v) = b′ and for all scalars
u, u′ of I1 such thatu 6= u′ and for all scalarsv, v′ of I1 there exists a scalara of I1 such that
T(u,a,v) = T(u′,a,v′) and for all scalarsa, a′, u, u′, v, v′ of I1 such thatT(u,a,v) = T(u′,a,v′)
andT(u,a′,v) = T(u′,a′,v′) holdsa = a′ or u = u′.

Let us observe that there exists a non empty ternary field structure which is strict and ternary
field-like.

A ternary field is a ternary field-like non empty ternary field structure.
We adopt the following rules:F denotes a ternary field anda, a′, b, c, x, x′, u, u′, v, v′ denote

scalars ofF .
Next we state several propositions:

(8) If a 6= a′ andT(u,a,v) = T(u′,a,v′) andT(u,a′,v) = T(u′,a′,v′), thenu = u′ andv = v′.

(11)4 If a 6= 0F , then for allb, c there existsx such thatT(a,x,b) = c.

(12) If a 6= 0F andT(a,x,b) = T(a,x′,b), thenx = x′.

(13) If a 6= 0F , then for allb, c there existsx such thatT(x,a,b) = c.

(14) If a 6= 0F andT(x,a,b) = T(x′,a,b), thenx = x′.
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