Ternary Fields¹

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. This article contains part 3 of the set of papers concerning the theory of algebraic structures, based on the book [3, pp. 13–15] (pages 6–8 for English edition).

First the basic structure $\langle F,0,1,T\rangle$ is defined, where T is a ternary operation on F (three argument operations have been introduced in the article [2]. Following it, the basic axioms of a ternary field are displayed, the mode is defined and its existence proved. The basic properties of a ternary field are also contemplated there.

MML Identifier: ALGSTR_3.

WWW: http://mizar.org/JFM/Vol2/algstr_3.html

The articles [6], [4], [5], [1], and [2] provide the notation and terminology for this paper.

We consider ternary field structures as extensions of zero structure as systems

⟨ a carrier, a zero, a unity, an operation ⟩,

where the carrier is a set, the zero and the unity are elements of the carrier, and the operation is a ternary operation on the carrier.

One can verify that there exists a ternary field structure which is non empty.

In the sequel F denotes a non empty ternary field structure.

Let us consider F. A scalar of F is an element of F.

In the sequel a, b, c denote scalars of F.

Let us consider F, a, b, c. The functor T(a,b,c) yielding a scalar of F is defined as follows:

(Def. 1)
$$T(a,b,c) =$$
(the operation of F) (a,b,c) .

Let us consider F. The functor $\mathbf{1}_F$ yields a scalar of F and is defined as follows:

 $(Def. 3)^1$ $\mathbf{1}_F = the unity of F.$

The ternary operation $T_{\mathbb{R}}$ on \mathbb{R} is defined as follows:

(Def. 4) For all real numbers a, b, c holds $T_{\mathbb{R}}(a, b, c) = a \cdot b + c$.

The strict ternary field structure \mathbb{R}_t is defined as follows:

(Def. 5)
$$\mathbb{R}_t = \langle \mathbb{R}, 0, 1, T_{\mathbb{R}} \rangle$$
.

Let us observe that \mathbb{R}_t is non empty.

Let a, b, c be scalars of \mathbb{R}_t . The functor $T^e(a, b, c)$ yields a scalar of \mathbb{R}_t and is defined as follows:

(Def. 6) $T^e(a,b,c) =$ (the operation of \mathbb{R}_t)(a,b,c).

Next we state four propositions:

1

¹Supported by RPBP.III-24.C6.

¹ The definition (Def. 2) has been removed.

- (3)² For all real numbers u, u', v, v' such that $u \neq u'$ there exists a real number x such that $u \cdot x + v = u' \cdot x + v'$.
- (5)³ For all scalars u, a, v of \mathbb{R}_t and for all real numbers z, x, y such that u = z and a = x and v = y holds $T(u, a, v) = z \cdot x + y$.
- (6) $0 = 0_{\mathbb{R}}$.
- $(7) \quad 1 = \mathbf{1}_{\mathbb{R}_t}.$

Let I_1 be a non empty ternary field structure. We say that I_1 is ternary field-like if and only if the conditions (Def. 7) are satisfied.

(Def. 7) $0_{(I_1)} \neq \mathbf{1}_{(I_1)}$ and for every scalar a of I_1 holds $\mathrm{T}(a,\mathbf{1}_{(I_1)},0_{(I_1)}) = a$ and for every scalar a of I_1 holds $\mathrm{T}(\mathbf{1}_{(I_1)},a,0_{(I_1)}) = a$ and for all scalars a,b of I_1 holds $\mathrm{T}(0_{(I_1)},a,b) = b$ and for all scalars u,a,b of I_1 there exists a scalar v of I_1 such that $\mathrm{T}(u,a,v) = b$ and for all scalars u,a,v,v' of I_1 such that $\mathrm{T}(u,a,v) = \mathrm{T}(u,a,v')$ holds v=v' and for all scalars a,a' of a=0 of a=0 and a=0 and a=0 of a=0 and a=0 and a=0 of a=0 of a=0 of

Let us observe that there exists a non empty ternary field structure which is strict and ternary field-like.

A ternary field is a ternary field-like non empty ternary field structure.

We adopt the following rules: F denotes a ternary field and a, a', b, c, x, x', u, u', v, v' denote scalars of F.

Next we state several propositions:

- (8) If $a \neq a'$ and T(u, a, v) = T(u', a, v') and T(u, a', v) = T(u', a', v'), then u = u' and v = v'.
- $(11)^4$ If $a \neq 0_F$, then for all b, c there exists x such that T(a, x, b) = c.
- (12) If $a \neq 0_F$ and T(a, x, b) = T(a, x', b), then x = x'.
- (13) If $a \neq 0_F$, then for all b, c there exists x such that T(x, a, b) = c.
- (14) If $a \neq 0_F$ and T(x, a, b) = T(x', a, b), then x = x'.

REFERENCES

- Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real 1.html.
- [2] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/multop_1.html.
- [3] Wanda Szmielew. From Affine to Euclidean Geometry, volume 27. PWN D.Reidel Publ. Co., Warszawa Dordrecht, 1983.
- [4] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [5] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlvect_1.html.

² The propositions (1) and (2) have been removed.

³ The proposition (4) has been removed.

⁴ The propositions (9) and (10) have been removed.

 $[6] \begin{tabular}{ll} Zinaida\ Trybulec.\ Properties\ of\ subsets.\ {\it Journal\ of\ Formalized\ Mathematics},1,1989.\ \verb|http://mizar.org/JFM/Vol1/subset_1.html|.\\ \end{tabular}$

Received October 15, 1990

Published January 2, 2004