From Loops to Abelian Multiplicative Groups with Zero¹

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. Elementary axioms and theorems on the theory of algebraic structures, taken from the book [5]. First a loop structure $\langle G,0,+\rangle$ is defined and six axioms corresponding to it are given. Group is defined by extending the set of axioms with (a+b)+c=a+(b+c). At the same time an alternate approach to the set of axioms is shown and both sets are proved to yield the same algebraic structure. A trivial example of loop is used to ensure the existence of the modes being constructed. A multiplicative group is contemplated, which is quite similar to the previously defined additive group (called simply a group here), but is supposed to be of greater interest in the future considerations of algebraic structures. The final section brings a slightly more sophisticated structure i.e: a multiplicative loop/group with zero: $\langle G, \cdot, 1, 0 \rangle$. Here the proofs are a more challenging and the above trivial example is replaced by a more common (and comprehensive) structure built on the foundation of real numbers.

MML Identifier: ALGSTR 1.

 $WWW: \verb|http://mizar.org/JFM/Vol2/algstr_1.html|$

The articles [6], [9], [7], [1], [2], [8], [4], and [3] provide the notation and terminology for this paper.

We use the following convention: L denotes a non empty loop structure and a, b, c, x denote elements of L.

One can prove the following propositions:

- (1) Suppose for every a holds $a + 0_L = a$ and for every a there exists x such that $a + x = 0_L$ and for all a, b, c holds (a + b) + c = a + (b + c). If $a + b = 0_L$, then $b + a = 0_L$.
- (2) If for every a holds $a + 0_L = a$ and for every a there exists x such that $a + x = 0_L$ and for all a, b, c holds (a + b) + c = a + (b + c), then $0_L + a = a + 0_L$.
- (3) Suppose for every a holds $a + 0_L = a$ and for every a there exists x such that $a + x = 0_L$ and for all a, b, c holds (a + b) + c = a + (b + c). Let given a. Then there exists x such that $x + a = 0_L$.

Let x be a set. The functor Extract(x) yields an element of $\{x\}$ and is defined as follows:

 $(Def. 3)^1$ Extract(x) = x.

The strict loop structure the trivial loop is defined as follows:

¹Supported by RPBP.III-24.C6.

¹ The definitions (Def. 1) and (Def. 2) have been removed.

(Def. 4) The trivial loop = $\langle \{\emptyset\}, op_2, Extract(\emptyset) \rangle$.

Let us observe that the trivial loop is non empty. One can prove the following propositions:

- (5)² For all elements a, b of the trivial loop holds a = b.
- (6) For all elements a, b of the trivial loop holds a + b = 0_{the trivial loop}.

Let I_1 be a non empty loop structure. We say that I_1 is left zeroed if and only if:

(Def. 5) For every element a of I_1 holds $0_{(I_1)} + a = a$.

Let *L* be a non empty loop structure. We say that *L* is add-left-cancelable if and only if:

(Def. 6) For all elements a, b, c of L such that a+b=a+c holds b=c.

We say that *L* is add-right-cancelable if and only if:

(Def. 7) For all elements a, b, c of L such that b + a = c + a holds b = c.

We say that *L* is add-left-invertible if and only if:

(Def. 8) For all elements a, b of L there exists an element x of L such that x + a = b.

We say that *L* is add-right-invertible if and only if:

(Def. 9) For all elements a, b of L there exists an element x of L such that a + x = b.

Let I_1 be a non empty loop structure. We say that I_1 is loop-like if and only if:

(Def. 10) I_1 is add-left-cancelable, add-right-cancelable, add-left-invertible, and add-right-invertible.

Let us observe that every non empty loop structure which is loop-like is also add-left-cancelable, add-right-cancelable, add-right-invertible and every non empty loop structure which is add-left-cancelable, add-right-cancelable, add-left-invertible, and add-right-invertible is also loop-like.

Next we state the proposition

- (7) Let *L* be a non empty loop structure. Then *L* is loop-like if and only if the following conditions are satisfied:
- (i) for all elements a, b of L there exists an element x of L such that a + x = b,
- (ii) for all elements a, b of L there exists an element x of L such that x + a = b,
- (iii) for all elements a, x, y of L such that a + x = a + y holds x = y, and
- (iv) for all elements a, x, y of L such that x + a = y + a holds x = y.

Let us mention that the trivial loop is add-associative, loop-like, right zeroed, and left zeroed.

Let us observe that there exists a non empty loop structure which is strict, left zeroed, right zeroed, and loop-like.

A loop is a left zeroed right zeroed loop-like non empty loop structure.

Let us mention that there exists a loop which is strict and add-associative.

A group is an add-associative loop.

One can check that every non empty loop structure which is loop-like is also right complementable and every non empty loop structure which is add-associative, right zeroed, and right complementable is also left zeroed and loop-like.

We now state the proposition

² The proposition (4) has been removed.

- $(9)^3$ L is a group if and only if the following conditions are satisfied:
- (i) for every a holds $a + 0_L = a$,
- (ii) for every a there exists x such that $a + x = 0_L$, and
- (iii) for all a, b, c holds (a+b) + c = a + (b+c).

One can verify that the trivial loop is Abelian.

One can verify that there exists a group which is strict and Abelian.

Next we state the proposition

- $(11)^4$ L is an Abelian group if and only if the following conditions are satisfied:
- (i) for every a holds $a + 0_L = a$,
- (ii) for every a there exists x such that $a + x = 0_L$,
- (iii) for all a, b, c holds (a+b)+c=a+(b+c), and
- (iv) for all a, b holds a + b = b + a.

The strict multiplicative loop structure the trivial multiplicative loop is defined as follows:

(Def. 11) The trivial multiplicative loop = $\langle \{\emptyset\}, op_2, Extract(\emptyset) \rangle$.

Let us observe that the trivial multiplicative loop is non empty.

The following two propositions are true:

- (18)⁵ For all elements a, b of the trivial multiplicative loop holds a = b.
- (19) For all elements a, b of the trivial multiplicative loop holds $a \cdot b = \mathbf{1}_{\text{the trivial multiplicative loop}}$.

Let I_1 be a non empty multiplicative loop structure. We say that I_1 is invertible if and only if the conditions (Def. 12) are satisfied.

- (Def. 12)(i) For all elements a, b of I_1 there exists an element x of I_1 such that $a \cdot x = b$, and
 - (ii) for all elements a, b of I_1 there exists an element x of I_1 such that $x \cdot a = b$.

We say that I_1 is cancelable if and only if the conditions (Def. 13) are satisfied.

- (Def. 13)(i) For all elements a, x, y of I_1 such that $a \cdot x = a \cdot y$ holds x = y, and
 - (ii) for all elements a, x, y of I_1 such that $x \cdot a = y \cdot a$ holds x = y.

Let us note that there exists a non empty multiplicative loop structure which is strict, well unital, invertible, and cancelable.

A multiplicative loop is a well unital invertible cancelable non empty multiplicative loop structure.

Let us note that the trivial multiplicative loop is well unital, invertible, and cancelable.

Let us observe that there exists a multiplicative loop which is strict and associative.

A multiplicative group is an associative multiplicative loop.

We adopt the following convention: L denotes a non empty multiplicative loop structure and a, b, c, x denote elements of L.

One can prove the following proposition

(22)⁶ L is a multiplicative group if and only if for every a holds $a \cdot \mathbf{1}_L = a$ and for every a there exists x such that $a \cdot x = \mathbf{1}_L$ and for all a, b, c holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Let us note that the trivial multiplicative loop is associative.

Let us note that there exists a multiplicative group which is strict and commutative.

One can prove the following proposition

³ The proposition (8) has been removed.

⁴ The proposition (10) has been removed.

⁵ The propositions (12)–(17) have been removed.

⁶ The propositions (20) and (21) have been removed.

(24)⁷ L is a commutative multiplicative group if and only if for every a holds $a \cdot \mathbf{1}_L = a$ and for every a there exists x such that $a \cdot x = \mathbf{1}_L$ and for all a, b, c holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ and for all a, b holds $a \cdot b = b \cdot a$.

Let L be an invertible cancelable non empty multiplicative loop structure and let a be an element of L. The functor a^{-1} yielding an element of L is defined as follows:

(Def. 16)⁸
$$a \cdot a^{-1} = \mathbf{1}_L$$
.

In the sequel G denotes a multiplicative group and a denotes an element of G. One can prove the following proposition

$$(26)^9$$
 $a \cdot a^{-1} = \mathbf{1}_G$ and $a^{-1} \cdot a = \mathbf{1}_G$.

Let L be an invertible cancelable non empty multiplicative loop structure and let a, b be elements of L. The functor $\frac{a}{b}$ yielding an element of L is defined by:

(Def. 17)
$$\frac{a}{b} = a \cdot b^{-1}$$
.

The strict multiplicative loop with zero structure the trivial multiplicative loop₀ is defined by:

(Def. 21)¹⁰ The trivial multiplicative loop₀ = $\langle \mathbb{R}, \cdot_{\mathbb{R}}, 1, 0 \rangle$.

One can verify that the trivial multiplicative loop₀ is non empty.

The following two propositions are true:

- (32)¹¹ For all real numbers q, p such that $q \neq 0$ there exists a real number y such that $p = q \cdot y$.
- (33) For all real numbers q, p such that $q \neq 0$ there exists a real number y such that $p = y \cdot q$.

Let I_1 be a non empty multiplicative loop with zero structure. We say that I_1 is almost invertible if and only if the conditions (Def. 22) are satisfied.

- (Def. 22)(i) For all elements a, b of I_1 such that $a \neq 0_{(I_1)}$ there exists an element x of I_1 such that $a \cdot x = b$, and
 - (ii) for all elements a, b of I_1 such that $a \neq 0_{(I_1)}$ there exists an element x of I_1 such that $x \cdot a = b$.

We say that I_1 is almost cancelable if and only if the conditions (Def. 23) are satisfied.

- (Def. 23)(i) For all elements a, x, y of I_1 such that $a \neq 0_{(I_1)}$ holds if $a \cdot x = a \cdot y$, then x = y, and
 - (ii) for all elements a, x, y of I_1 such that $a \neq 0_{(I_1)}$ holds if $x \cdot a = y \cdot a$, then x = y.

Let I_1 be a non empty multiplicative loop with zero structure. We say that I_1 is multiplicative loop with zero-like if and only if the conditions (Def. 24) are satisfied.

- (Def. 24)(i) I_1 is almost invertible and almost cancelable,
 - (ii) for every element a of I_1 holds $a \cdot 0_{(I_1)} = 0_{(I_1)}$, and
 - (iii) for every element a of I_1 holds $0_{(I_1)} \cdot a = 0_{(I_1)}$.

One can prove the following proposition

⁷ The proposition (23) has been removed.

⁸ The definitions (Def. 14) and (Def. 15) have been removed.

⁹ The proposition (25) has been removed.

¹⁰ The definitions (Def. 18)–(Def. 20) have been removed.

¹¹ The propositions (27)–(31) have been removed.

- (34) Let L be a non empty multiplicative loop with zero structure. Then L is multiplicative loop with zero-like if and only if the following conditions are satisfied:
 - (i) for all elements a, b of L such that $a \neq 0_L$ there exists an element x of L such that $a \cdot x = b$,
- (ii) for all elements a, b of L such that $a \neq 0_L$ there exists an element x of L such that $x \cdot a = b$,
- (iii) for all elements a, x, y of L such that $a \neq 0_L$ holds if $a \cdot x = a \cdot y$, then x = y,
- (iv) for all elements a, x, y of L such that $a \neq 0_L$ holds if $x \cdot a = y \cdot a$, then x = y,
- (v) for every element a of L holds $a \cdot 0_L = 0_L$, and
- (vi) for every element a of L holds $0_L \cdot a = 0_L$.

Let us note that every non empty multiplicative loop with zero structure which is multiplicative loop with zero-like is also almost invertible and almost cancelable.

Let us note that there exists a non empty multiplicative loop with zero structure which is strict, well unital, multiplicative loop with zero-like, and non degenerated.

A multiplicative loop with zero is a well unital non degenerated multiplicative loop with zerolike non empty multiplicative loop with zero structure.

One can check that the trivial multiplicative $loop_0$ is well unital and multiplicative loop with zero-like.

Let us observe that there exists a multiplicative loop with zero which is strict, associative, and non degenerated.

A multiplicative group with zero is an associative non degenerated multiplicative loop with zero. We adopt the following rules: L denotes a non empty multiplicative loop with zero structure and a, b, c, x denote elements of L.

Next we state the proposition

- $(36)^{12}$ L is a multiplicative group with zero if and only if the following conditions are satisfied:
 - (i) $0_L \neq \mathbf{1}_L$
- (ii) for every a holds $a \cdot \mathbf{1}_L = a$,
- (iii) for every a such that $a \neq 0_L$ there exists x such that $a \cdot x = \mathbf{1}_L$,
- (iv) for all a, b, c holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- (v) for every a holds $a \cdot 0_L = 0_L$, and
- (vi) for every a holds $0_L \cdot a = 0_L$.

One can check that the trivial multiplicative loop₀ is associative.

Let us note that there exists a multiplicative group with zero which is strict and commutative. The following proposition is true

 $(38)^{13}$ L is a commutative multiplicative group with zero if and only if the following conditions are satisfied:

 $0_L \neq \mathbf{1}_L$ and for every a holds $a \cdot \mathbf{1}_L = a$ and for every a such that $a \neq 0_L$ there exists x such that $a \cdot x = \mathbf{1}_L$ and for all a, b, c holds $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ and for every a holds $a \cdot 0_L = 0_L$ and for every a holds $0_L \cdot a = 0_L$ and for all a, b holds $a \cdot b = b \cdot a$.

Let L be an almost invertible almost cancelable non empty multiplicative loop with zero structure and let a be an element of L. Let us assume that $a \neq 0_L$. The functor a^{-1} yielding an element of L is defined as follows:

(Def. 25)
$$a \cdot a^{-1} = \mathbf{1}_L$$
.

In the sequel G is an associative almost invertible almost cancelable well unital non empty multiplicative loop with zero structure and a is an element of G.

We now state the proposition

¹² The proposition (35) has been removed.

¹³ The proposition (37) has been removed.

$$(40)^{14}$$
 If $a \neq 0_G$, then $a \cdot a^{-1} = \mathbf{1}_G$ and $a^{-1} \cdot a = \mathbf{1}_G$.

Let L be an almost invertible almost cancelable non empty multiplicative loop with zero structure and let a, b be elements of L. The functor $\frac{a}{b}$ yields an element of L and is defined as follows:

(Def. 26)
$$\frac{a}{b} = a \cdot b^{-1}$$
.

REFERENCES

- [1] Krzysztof Hryniewiecki. Basic properties of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [2] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [3] Michał Muzalewski. Midpoint algebras. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/midsp_1.html.
- [4] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [5] Wanda Szmielew. From Affine to Euclidean Geometry, volume 27. PWN D.Reidel Publ. Co., Warszawa Dordrecht, 1983.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [8] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect 1.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received July 10, 1990

Published January 2, 2004

¹⁴ The proposition (39) has been removed.