Homomorphisms of Algebras. Quotient Universal Algebra # Małgorzata Korolkiewicz Warsaw University Białystok **Summary.** The first part introduces homomorphisms of universal algebras and their basic properties. The second is concerned with the construction of a quotient universal algebra. The first isomorphism theorem is proved. MML Identifier: ALG_1. WWW: http://mizar.org/JFM/Vol5/alg_1.html The articles [10], [11], [12], [14], [13], [3], [1], [5], [9], [7], [4], [8], [6], and [2] provide the notation and terminology for this paper. #### 1. Homomorphisms of Algebras For simplicity, we adopt the following convention: U_1 , U_2 , U_3 denote universal algebras, n denotes a natural number, o_1 denotes an operation of U_1 , o_2 denotes an operation of U_2 , and x, y denote sets. The following two propositions are true: - (1) Let D_1 , D_2 be non empty sets, p be a finite sequence of elements of D_1 , and f be a function from D_1 into D_2 . Then $\text{dom}(f \cdot p) = \text{dom}\,p$ and $\text{len}(f \cdot p) = \text{len}\,p$ and for every n such that $n \in \text{dom}(f \cdot p)$ holds $(f \cdot p)(n) = f(p(n))$. - (2) For every non empty subset B of U_1 such that B = the carrier of U_1 holds Opers (U_1, B) = the characteristic of U_1 . Let U_1 , U_2 be 1-sorted structures. A function from U_1 into U_2 is a function from the carrier of U_1 into the carrier of U_2 . In the sequel a is a finite sequence of elements of U_1 and f is a function from U_1 into U_2 . Next we state three propositions: - (3) $f \cdot \varepsilon_{\text{(the carrier of } U_1)} = \varepsilon_{\text{(the carrier of } U_2)}$. - (4) $id_{the carrier of U_1} \cdot a = a$. - (5) Let h_1 be a function from U_1 into U_2 , h_2 be a function from U_2 into U_3 , and a be a finite sequence of elements of U_1 . Then $h_2 \cdot (h_1 \cdot a) = (h_2 \cdot h_1) \cdot a$. Let us consider U_1 , U_2 , f. We say that f is a homomorphism of U_1 into U_2 if and only if the conditions (Def. 1) are satisfied. - (Def. 1)(i) U_1 and U_2 are similar, and - (ii) for every n such that n ∈ dom(the characteristic of U₁) and for all o₁, o₂ such that o₁ = (the characteristic of U₁)(n) and o₂ = (the characteristic of U₂)(n) and for every finite sequence x of elements of U₁ such that x ∈ dom o₁ holds f(o₁(x)) = o₂(f ⋅ x). Let us consider U_1, U_2, f . We say that f is a monomorphism of U_1 into U_2 if and only if: (Def. 2) f is a homomorphism of U_1 into U_2 and one-to-one. We say that f is an epimorphism of U_1 onto U_2 if and only if: (Def. 3) f is a homomorphism of U_1 into U_2 and rng f = the carrier of U_2 . Let us consider U_1 , U_2 , f. We say that f is an isomorphism of U_1 and U_2 if and only if: (Def. 4) f is a monomorphism of U_1 into U_2 and an epimorphism of U_1 onto U_2 . Let us consider U_1 , U_2 . We say that U_1 and U_2 are isomorphic if and only if: (Def. 5) There exists f which is an isomorphism of U_1 and U_2 . The following propositions are true: - (6) id_{the carrier of U_1} is a homomorphism of U_1 into U_1 . - (7) Let h_1 be a function from U_1 into U_2 and h_2 be a function from U_2 into U_3 . Suppose h_1 is a homomorphism of U_1 into U_2 and h_2 is a homomorphism of U_2 into U_3 . Then $h_2 \cdot h_1$ is a homomorphism of U_1 into U_3 . - (8) f is an isomorphism of U_1 and U_2 if and only if f is a homomorphism of U_1 into U_2 and rng f = the carrier of U_2 and f is one-to-one. - (9) If f is an isomorphism of U_1 and U_2 , then dom f = the carrier of U_1 and rng f = the carrier of U_2 . - (10) Let h be a function from U_1 into U_2 and h_1 be a function from U_2 into U_1 . Suppose h is an isomorphism of U_1 and U_2 and $h_1 = h^{-1}$. Then h_1 is a homomorphism of U_2 into U_1 . - (11) Let h be a function from U_1 into U_2 and h_1 be a function from U_2 into U_1 . Suppose h is an isomorphism of U_1 and U_2 and $h_1 = h^{-1}$. Then h_1 is an isomorphism of U_2 and U_1 . - (12) Let h be a function from U_1 into U_2 and h_1 be a function from U_2 into U_3 . Suppose h is an isomorphism of U_1 and U_2 and h_1 is an isomorphism of U_2 and U_3 . Then $h_1 \cdot h$ is an isomorphism of U_1 and U_3 . - (13) U_1 and U_1 are isomorphic. - (14) If U_1 and U_2 are isomorphic, then U_2 and U_1 are isomorphic. - (15) If U_1 and U_2 are isomorphic and U_2 and U_3 are isomorphic, then U_1 and U_3 are isomorphic. Let us consider U_1 , U_2 , f. Let us assume that f is a homomorphism of U_1 into U_2 . The functor Im f yielding a strict subalgebra of U_2 is defined by: (Def. 6) The carrier of Im $f = f^{\circ}$ (the carrier of U_1). One can prove the following two propositions: - (16) For every function h from U_1 into U_2 such that h is a homomorphism of U_1 into U_2 holds $\operatorname{rng} h = \operatorname{the carrier}$ of $\operatorname{Im} h$. - (17) Let U_2 be a strict universal algebra and f be a function from U_1 into U_2 . Suppose f is a homomorphism of U_1 into U_2 . Then f is an epimorphism of U_1 onto U_2 if and only if $\operatorname{Im} f = U_2$. ### 2. QUOTIENT UNIVERSAL ALGEBRA Let U_1 be a 1-sorted structure. A binary relation on U_1 is a binary relation on the carrier of U_1 . An equivalence relation of U_1 is an equivalence relation of the carrier of U_1 . Let D be a non empty set and let R be a binary relation on D. The functor $R^{\#}$ yields a binary relation on D^* and is defined by the condition (Def. 9). - (Def. 9)¹ Let x, y be finite sequences of elements of D. Then $\langle x, y \rangle \in R^{\#}$ if and only if the following conditions are satisfied: - (i) len x = len y, and - (ii) for every *n* such that $n \in \text{dom } x \text{ holds } \langle x(n), y(n) \rangle \in R$. We now state the proposition (18) For every non empty set *D* holds $(id_D)^\# = id_{D^*}$. Let us consider U_1 . An equivalence relation of U_1 is said to be a congruence of U_1 if it satisfies the condition (Def. 10). (Def. 10) Let given n, o_1 . Suppose $n \in \text{dom}$ (the characteristic of U_1) and $o_1 = \text{(the characteristic of } U_1)(n)$. Let x, y be finite sequences of elements of U_1 . If $x \in \text{dom } o_1$ and $y \in \text{dom } o_1$ and $\langle x, y \rangle \in \text{it}^\#$, then $\langle o_1(x), o_1(y) \rangle \in \text{it}$. In the sequel E denotes a congruence of U_1 . Let D be a non empty set, let R be an equivalence relation of D, let y be a finite sequence of elements of Classes R, and let x be a finite sequence of elements of D. We say that x is a finite sequence of representatives of y if and only if: (Def. 11) $\operatorname{len} x = \operatorname{len} y$ and for every n such that $n \in \operatorname{dom} x$ holds $[x(n)]_R = y(n)$. The following proposition is true (19) Let D be a non empty set, R be an equivalence relation of D, and y be a finite sequence of elements of Classes R. Then there exists a finite sequence of elements of D which is a finite sequence of representatives of y. Let U_1 be a universal algebra, let E be a congruence of U_1 , and let o be an operation of U_1 . The functor $o_{/E}$ yields a homogeneous quasi total non empty partial function from (Classes E)* to Classes E and is defined by the conditions (Def. 12). - (Def. 12)(i) $dom(o_{/E}) = (Classes E)^{arity o}$, and - (ii) for every finite sequence y of elements of Classes E such that $y \in \text{dom}(o_{/E})$ and for every finite sequence x of elements of the carrier of U_1 such that x is a finite sequence of representatives of y holds $o_{/E}(y) = [o(x)]_E$. Let us consider U_1 , E. The functor $Opers((U_1))_{/E}$ yields a finite sequence of operational functions of Classes E and is defined by the conditions (Def. 13). - (Def. 13)(i) $\operatorname{len}(\operatorname{Opers}((U_1))_{/E}) = \operatorname{len}(\operatorname{the characteristic of } U_1), \text{ and }$ - (ii) for every n such that $n \in \text{dom}(\text{Opers}((U_1))_{/E})$ and for every o_1 such that (the characteristic of $U_1)(n) = o_1$ holds $\text{Opers}((U_1))_{/E}(n) = (o_1)_{/E}$. We now state the proposition (20) For all U_1 , E holds $\langle \text{Classes } E, \text{Opers}((U_1))_{/E} \rangle$ is a strict universal algebra. Let us consider U_1 , E. The functor $(U_1)_{/E}$ yielding a strict universal algebra is defined as follows: ¹ The definitions (Def. 7) and (Def. 8) have been removed. (Def. 14) $(U_1)_{/E} = \langle \text{Classes } E, \text{Opers}((U_1))_{/E} \rangle$. Let us consider U_1 , E. The natural homomorphism of U_1 w.r.t. E yields a function from U_1 into $(U_1)_{/E}$ and is defined as follows: (Def. 15) For every element u of U_1 holds (the natural homomorphism of U_1 w.r.t. E) $(u) = [u]_E$. We now state two propositions: - (21) For all U_1 , E holds the natural homomorphism of U_1 w.r.t. E is a homomorphism of U_1 into $(U_1)_{/E}$. - (22) For all U_1 , E holds the natural homomorphism of U_1 w.r.t. E is an epimorphism of U_1 onto $(U_1)_{/E}$. Let us consider U_1 , U_2 and let f be a function from U_1 into U_2 . Let us assume that f is a homomorphism of U_1 into U_2 . The functor Cng(f) yielding a congruence of U_1 is defined by: (Def. 16) For all elements a, b of U_1 holds $\langle a, b \rangle \in \operatorname{Cng}(f)$ iff f(a) = f(b). Let U_1 , U_2 be universal algebras and let f be a function from U_1 into U_2 . Let us assume that f is a homomorphism of U_1 into U_2 . The functor \overline{f} yielding a function from $(U_1)_{/\operatorname{Cng}(f)}$ into U_2 is defined by: (Def. 17) For every element a of U_1 holds $(\overline{f})([a]_{\operatorname{Cng}(f)}) = f(a)$. Next we state three propositions: - (23) Suppose f is a homomorphism of U_1 into U_2 . Then \overline{f} is a homomorphism of $(U_1)_{/\operatorname{Cng}(f)}$ into U_2 and \overline{f} is a monomorphism of $(U_1)_{/\operatorname{Cng}(f)}$ into U_2 . - (24) If f is an epimorphism of U_1 onto U_2 , then \overline{f} is an isomorphism of $(U_1)_{/\operatorname{Cng}(f)}$ and U_2 . - (25) If f is an epimorphism of U_1 onto U_2 , then $(U_1)_{/\operatorname{Cng}(f)}$ and U_2 are isomorphic. ## REFERENCES - [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg 1.html. - [2] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/unialg_2.html. - [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html. - [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html. - [6] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html. - [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html. - [8] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/unialg_1.html. - [9] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/egrel_1.html. - [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - $[11] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \enskip \textbf{http://mizar.org/JFM/Vol1/subset_1.html.}$ - [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html. - [13] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html. - [14] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html. Received October 12, 1993 Published January 2, 2004