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Summary. The first part introduces homomorphisms of universal algebras and their
basic properties. The second is concerned with the construction of a quotient universal algebra.
The first isomorphism theorem is proved.

MML Identifier: ALG_1.

WWW: http://mizar.org/JFM/Vol5/alg_1.html

The articles[[10],[[10],[12]/114])/ 1131/ [3],11],16],[19],[171,[141,[18],[[6], and [2] provide the notation
and terminology for this paper.

1. HOMOMORPHISMS OFALGEBRAS

For simplicity, we adopt the following conventiold;, U,, U3 denote universal algebrasdenotes
a natural numben; denotes an operation b, 0, denotes an operation 0%, andx, y denote sets.
The following two propositions are true:

(1) LetDj, D2 be non empty setg be a finite sequence of elementdxf, andf be a function
from D into D,. Then donif - p) = domp and ler{f - p) = lenp and for everyn such that

n e dom(f - p) holds(f - p)(n) = f(p(n)).

(2) Forevery non empty subsgbfU; such thaB = the carrier ofJ; holds OperdJ;,B) =the
characteristic obt;.

Let U4, Us be 1-sorted structures. A function frddj into U, is a function from the carrier of
Us into the carrier ofJ,.

In the sequed is a finite sequence of elementsdf and f is a function fromJ; into Us.

Next we state three propositions:

(3) f s(the carrier ofUy) = e(the carrier ofUs) -

(4) idthe carrier ofUy * a=a.

(5) Leth; be a function fronmJ; into Uy, hy be a function fromlJ, into U3, anda be a finite

sequence of elements0f. Thenhy- (h1-a) = (h2-h1)-a.

Let us considet, U, f. We say thatf is a homomorphism df); into U, if and only if the
conditions (Def. 1) are satisfied.

1 © Association of Mizar Users
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(Def. 1)(i) U4 andU; are similar, and

(i) for everynsuch thah € dom (the characteristic &f;) and for allog, 02 such thab, = (the
characteristic o)1 )(n) ando, = (the characteristic dfi;)(n) and for every finite sequence
of elements obJ; such tha € domo; holds f (01(x)) = 02(f - ).

Let us considet;, Uy, f. We say thaff is a monomorphism dfl; into U, if and only if:
(Def. 2) f is a homomorphism df; into U, and one-to-one.
We say thaff is an epimorphism df); ontoUs, if and only if:
(Def. 3) f is a homomorphism dfl; into U, and rngf = the carrier olJs.
Let us consideds, Uy, f. We say thaff is an isomorphism dfl; andU, if and only if:
(Def. 4) f is a monomorphism dfl; into U, and an epimorphism d&f; ontoUs.
Let us consided;, Up. We say that; andU, are isomorphic if and only if:
(Def. 5) There exist§ which is an isomorphism df; andU,.

The following propositions are true:
(6) iOthe carrier ofu; iS @ homomorphism dfi; into U;.

(7) Lethy be a function fronU; into U, andhy be a function fronJ; into Uz. Supposé is
a homomorphism ofJ; into U, andh; is a homomorphism dfl, into Us. Thenhy-hy is a
homomorphism ob; into Us.

(8) f is anisomorphism adf); andU; if and only if f is a homomorphism df); into U, and
rngf = the carrier olJ, andf is one-to-one.

(9) If fisanisomorphism dfl; andU,, then donf = the carrier otJ; and rngf = the carrier
of Uo.

(10) Leth be a function from; into U, andh; be a function fronl, into U;. Supposé is an
isomorphism ofJ; andU, andh; = h~1. Thenh; is a homomorphism dfl, into U.

(11) Leth be a function fronU; into U, andh; be a function fronU, into U;. Supposé is an
isomorphism ofJ; andU, andh; = h~1. Thenhy is an isomorphism dfl; andUj.

(12) Leth be a function fromJ; into U, andh; be a function fromJ, into Uz. Supposeh
is an isomorphism ofJ; andU; andh; is an isomorphism ofJ, andUs. Thenh;-his an
isomorphism ofJ; andUs.

(13) U; andU; are isomorphic.
(14) IfUq andU; are isomorphic, theb, andU; are isomorphic.
(15) If U1 andU, are isomorphic and, andUs are isomorphic, theb; andUs are isomorphic.

Let us considet;, Uy, f. Let us assume thdtis a homomorphism dfi; into U,. The functor
Im f yielding a strict subalgebra &f; is defined by:

(Def. 6) The carrier of Inf = f°(the carrier olJq).

One can prove the following two propositions:

(16) For every functiorh from U, into U, such thath is a homomorphism df; into U, holds
rngh = the carrier of Imh.

(17) LetU; be a strict universal algebra arfdbe a function fromJ; into U,. Supposef is
a homomorphism ob); into U,. Then f is an epimorphism obJ; onto U, if and only if
Imf = Uo.
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2. QUOTIENT UNIVERSAL ALGEBRA

LetU; be a 1-sorted structure. A binary relationdnis a binary relation on the carrier bf;. An
equivalence relation df; is an equivalence relation of the carriendf.

Let D be a non empty set and IBtbe a binary relation ol. The functorR? yields a binary
relation onD* and is defined by the condition (Def. 9).

(Def. QE] Letx, y be finite sequences of elementdbfThen(x, y) € R if and only if the following
conditions are satisfied:
(i) lenx=leny, and
(i) for everynsuch thah € domx holds{x(n), y(n)} € R.

We now state the proposition
(18) For every non empty s&tholds(idp )* = idp-.

Let us considet);. An equivalence relation df; is said to be a congruence Uf if it satisfies
the condition (Def. 10).

(Def. 10) Let givem, 0;. Suppose € dom (the characteristic &f1) ando; = (the characteristic of
Ui)(n). Letx, y be finite sequences of elementshf If x € domo; andy € domo; and({x,
y) €it?, then(oy(x), o1(y)) € it.

In the sequeE denotes a congruence 0f.

Let D be a non empty set, I® be an equivalence relation &%, lety be a finite sequence of
elements of Class& and letx be a finite sequence of elementsdf We say thai is a finite
sequence of representativesyaf and only if:

(Def. 11) lerx = leny and for everyn such than € domx holds [x(n)]g = y(n).

The following proposition is true

(19) LetD be a non empty seR be an equivalence relation B, andy be a finite sequence of
elements of Class&s Then there exists a finite sequence of elemenfd ahich is a finite
sequence of representativesyof

Let U; be a universal algebra, I1& be a congruence df;, and leto be an operation df;.
The functoro g yields a homogeneous quasi total non empty partial function {Glasse& )" to
Classe& and is defined by the conditions (Def. 12).

(Def 12)(|) dOIT(O/E) = (C'asseE)arityO, and

(i)  for every finite sequencg of elements of Class&such that € dom(o/g) and for every
finite sequence of elements of the carrier &f; such thaik is a finite sequence of represen-
tatives ofy holdso g (y) = [0(X)]g-

Let us considets, E. The functor Oper§U1)) e yields a finite sequence of operational func-
tions of ClasseB and is defined by the conditions (Def. 13).

(Def. 13)(i) len(Operg(U1)),e) = len(the characteristic &f;), and

(ii)  for everynsuch thah € dom(Operg(Us)) e) and for everyo; such that (the characteristic
of Up)(n) = o1 holds Oper§{Us)) e(n) = (01) /e

We now state the proposition
(20) Foralluy, E holds(Classeg&, Operg(U1)) g) is a strict universal algebra.

Let us considet);, E. The functor(U;) e yielding a strict universal algebra is defined as
follows:

1 The definitions (Def. 7) and (Def. 8) have been removed.
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(Def. 14) (Uy) e = (Classe&, Operg(Uy)) ).

Let us considet;, E. The natural homomorphism b, w.r.t. E yields a function frontJ; into
(U1) e and is defined as follows:

(Def. 15) For every elementof U holds (the natural homomorphismd{ w.r.t. E)(u) = [u]g.

We now state two propositions:

(21) For alluy, E holds the natural homomorphism Gf w.r.t. E is a homomorphism dfl;
into (Ul)/E-

(22) For alluy, E holds the natural homomorphismWdf w.r.t. E is an epimorphism dfl; onto
(U) /e

Let us considet)y, U, and letf be a function fromJ; into U,. Let us assume that is a
homomorphism obJ; into U,. The functor Cn¢f) yielding a congruence di is defined by:

(Def. 16) For all elements, b of U1 holds{a, b) € Cng(f) iff f(a) = f(b).

LetU;, Uz be universal algebras and Iebe a function fronU; into U,. Let us assume thdt
is @ homomorphism dfJ; into U,. The functorf yielding a function from(Ul)/Cng(f> into Us is
defined by:

(Def. 17) For every elememtof Uy hoIds(T)([a]Cng(f)) = f(a).

Next we state three propositions:

(23) Supposd is a homomorphism dfl; into U,. Thenf is a homomorphism ofU1) /cng 1)
into U, and f is a monomorphism aU1),cng f) into Uz.

(24) If f is an epimorphism df); ontoU,, thenf is an isomorphism ofU1) /cng 1) andU..

(25) If fis an epimorphism dfl; ontoUy, then(Us) ,cng 1) @andU, are isomorphic.
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