Directed Geometrical Bundles and Their Analytical Representation¹

Grzegorz Lewandowski Siedlce Agricultural and Pedagogical University Krzysztof Prażmowski Warsaw University Białystok

Bożena Lewandowska Siedlce Agricultural and Pedagogical University

Summary. We introduce the notion of weak directed geometrical bundle. We prove representation theorems for directed and weak directed geometrical bundles which establishes a one-to-one correspondence between such structures and appropriate 2-divisible abelian groups. To this aim we construct over arbitrary weak directed geometrical bundle a group defined entirely in terms of geometrical notions – the group of (abstract) "free vectors".

MML Identifier: AFVECTO.

WWW: http://mizar.org/JFM/Vol2/afvect0.html

The articles [9], [5], [11], [1], [8], [7], [3], [4], [2], [12], [6], and [10] provide the notation and terminology for this paper.

Let I_1 be a non empty affine structure. We say that I_1 is weak affine vector space-like if and only if the conditions (Def. 1) are satisfied.

- (ii) for all elements a, b, c, d, p, q of I_1 such that a, b
 p, q and c, d
 p, q holds a, b
 c, d,
- (iii) for all elements a, b, c of I_1 there exists an element d of I_1 such that $a, b \uparrow c, d$,
- (iv) for all elements a, b, c, a', b', c' of I_1 such that $a, b \uparrow a', b'$ and $a, c \uparrow a', c'$ holds $b, c \uparrow b', c'$,
- (v) for all elements a, c of I_1 there exists an element b of I_1 such that a, b
 subseteq b, b, c, and

Let us observe that there exists a non empty affine structure which is strict, non trivial, and weak affine vector space-like.

A weak affine vector space is a non trivial weak affine vector space-like non empty affine structure.

Let us note that every non empty affine structure which is space of free vectors-like is also weak affine vector space-like.

We follow the rules: A_1 is a weak affine vector space and a, b, c, d, f, a', b', c', d', f', p, q, r, o are elements of A_1 .

Next we state a number of propositions:

1

¹Supported by RPBP.III-24.C3.

- $(2)^{1}$ $a,b \parallel a,b.$
- (3) $a,a \parallel a,a$.
- (4) If $a,b \parallel c,d$, then $c,d \parallel a,b$.
- (5) If $a, b \parallel a, c$, then b = c.
- (6) If $a,b \parallel c,d$ and $a,b \parallel c,d'$, then d=d'.
- (7) For all a, b holds a, a
 b, b.
- (8) If $a,b \parallel c,d$, then $b,a \parallel d,c$.
- (9) If $a,b \upharpoonright c,d$ and $a,c \upharpoonright b',d$, then b=b'.
- (10) If $b, c \uparrow b', c'$ and $a, d \uparrow b, c$ and $a, d' \uparrow b', c'$, then d = d'.
- (11) If $a,b \parallel a',b'$ and $c,d \parallel b,a$ and $c,d' \parallel b',a'$, then d=d'.
- (12) If $a,b \parallel a',b'$ and $c,d \parallel c',d'$ and $b,f \parallel c,d$ and $b',f' \parallel c',d'$, then $a,f \parallel a',f'$.
- (13) If $a,b \parallel a',b'$ and $a,c \parallel c',b'$, then $b,c \parallel c',a'$.

Let us consider A_1 and let us consider a, b. We say that a, b are in a maximal distance if and only if:

(Def. 2) $a,b \uparrow b,a$ and $a \neq b$.

Let us notice that the predicate a, b are in a maximal distance is irreflexive and symmetric.

The following three propositions are true:

- (16)² There exist a, b such that $a \neq b$ and a, b are not in a maximal distance.
- (18)³ Suppose a, b are in a maximal distance and a, c are in a maximal distance. Then b = c or b, c are in a maximal distance.
- (19) If a, b are in a maximal distance and a, $b \parallel c$, d, then c, d are in a maximal distance.

Let us consider A_1 and let us consider a, b, c. We say that b is a midpoint of a, c if and only if:

(Def. 3) $a,b \parallel b,c$.

Next we state a number of propositions:

- $(21)^4$ If b is a midpoint of a, c, then b is a midpoint of c, a.
- (22) b is a midpoint of a, b iff a = b.
- (23) b is a midpoint of a, a iff a = b or a, b are in a maximal distance.
- (24) There exists b such that b is a midpoint of a, c.
- (25) Suppose b is a midpoint of a, c and b' is a midpoint of a, c. Then b = b' or b, b' are in a maximal distance.
- (26) There exists c such that b is a midpoint of a, c.
- (27) If b is a midpoint of a, c and b is a midpoint of a, c', then c = c'.
- (28) If b is a midpoint of a, c and b, b' are in a maximal distance, then b' is a midpoint of a, c.

¹ The proposition (1) has been removed.

² The propositions (14) and (15) have been removed.

³ The proposition (17) has been removed.

⁴ The proposition (20) has been removed.

- (29) Suppose b is a midpoint of a, c and b' is a midpoint of a, c' and b, b' are in a maximal distance. Then c = c'.
- (30) If p is a midpoint of a, a' and p is a midpoint of b, b', then a,b
 subseteq b', a'.

Let us consider A_1 and let us consider a, b. The functor PSym(a,b) yielding an element of A_1 is defined by:

(Def. 4) a is a midpoint of b, PSym(a,b).

One can prove the following propositions:

- (33)⁵ PSym(p,a) = b iff $a, p \parallel p, b$.
- (35)⁶ PSym(p,a) = a iff a = p or a, p are in a maximal distance.
- (36) $\operatorname{PSym}(p, \operatorname{PSym}(p, a)) = a$.
- (37) If PSym(p, a) = PSym(p, b), then a = b.
- (38) There exists a such that PSym(p, a) = b.
- (39) $a,b \parallel PSym(p,b), PSym(p,a).$
- (40) $a,b \parallel c,d \text{ iff } PSym(p,a), PSym(p,b) \parallel PSym(p,c), PSym(p,d).$
- (41) a, b are in a maximal distance iff PSym(p,a), PSym(p,b) are in a maximal distance.
- (42) b is a midpoint of a, c iff PSym(p,b) is a midpoint of PSym(p,a), PSym(p,c).
- (43) PSym(p, a) = PSym(q, a) iff p = q or p, q are in a maximal distance.
- (44) $\operatorname{PSym}(q, \operatorname{PSym}(p, \operatorname{PSym}(q, a))) = \operatorname{PSym}(\operatorname{PSym}(q, p), a).$
- (45) $\operatorname{PSym}(p,\operatorname{PSym}(q,a)) = \operatorname{PSym}(q,\operatorname{PSym}(p,a))$ if and only if one of the following conditions is satisfied:
 - (i) p = q, or
 - (ii) p, q are in a maximal distance, or
- (iii) q, PSym(p,q) are in a maximal distance.
- (46) $\operatorname{PSym}(p, \operatorname{PSym}(q, \operatorname{PSym}(r, a))) = \operatorname{PSym}(r, \operatorname{PSym}(q, \operatorname{PSym}(p, a))).$
- (47) There exists d such that PSym(a, PSym(b, PSym(c, p))) = PSym(d, p).
- (48) There exists c such that PSym(a, PSym(c, p)) = PSym(c, PSym(b, p)).

Let us consider A_1 , o and let us consider a, b. The functor Padd(o,a,b) yielding an element of A_1 is defined as follows:

(Def. 5) $o, a \parallel b, \text{Padd}(o, a, b)$.

Let us consider A_1 , o and let us consider a. We introduce Pcom(o, a) as a synonym of PSym(o, a). Let us consider A_1 , o. The functor Padd o yields a binary operation on the carrier of A_1 and is defined by:

(Def. 7)⁷ For all a, b holds (Padd o)(a, b) = Padd(o, a, b).

⁵ The proposition (32) has been removed.

⁶ The proposition (34) has been removed.

⁷ The definition (Def. 6) has been removed.

Let us consider A_1 , o. The functor Pcom o yields a unary operation on the carrier of A_1 and is defined as follows:

(Def. 8) For every a holds (Pcom o)(a) = Pcom(o, a).

Let us consider A_1 , o. The functor GroupVect(A_1 , o) yields a strict loop structure and is defined by:

(Def. 9) GroupVect(A_1, o) = \langle the carrier of A_1 , Padd $o, o \rangle$.

Let us consider A_1 , o. One can verify that GroupVect(A_1 , o) is non empty. Next we state two propositions:

- (55)⁸ The carrier of GroupVect(A_1, o) = the carrier of A_1 and the addition of GroupVect(A_1, o) = Padd o and the zero of GroupVect(A_1, o) = o.
- (57)⁹ For all elements a, b of GroupVect (A_1, o) and for all elements a', b' of A_1 such that a = a' and b = b' holds a + b = (Padd o)(a', b').

Let us consider A_1 , o. Note that GroupVect(A_1 , o) is Abelian, add-associative, right zeroed, and right complementable.

Next we state two propositions:

- (58) For every element a of GroupVect (A_1, o) and for every element a' of A_1 such that a = a' holds -a = (Pcom o)(a').
- (59) $0_{\text{GroupVect}(A_1,o)} = o$.

In the sequel a, b denote elements of GroupVect(A_1 , o).

Next we state the proposition

(66)¹⁰ For every a there exists b such that b + b = a.

Let us consider A_1 , o. One can verify that GroupVect(A_1 , o) is 2-divisible.

In the sequel A_1 denotes a space of free vectors and o denotes an element of A_1 .

Next we state the proposition

(67) For every element a of GroupVect (A_1, o) such that $a + a = 0_{\text{GroupVect}(A_1, o)}$ holds $a = 0_{\text{GroupVect}(A_1, o)}$.

Let us consider A_1 , o. One can check that GroupVect(A_1 , o) is Fanoian.

Let us note that there exists a uniquely 2-divisible group which is strict and non trivial.

A proper uniquely two divisible group is a non trivial uniquely 2-divisible group.

Next we state the proposition

 $(69)^{11}$ GroupVect (A_1, o) is a proper uniquely two divisible group.

Let us consider A_1 , o. Note that GroupVect(A_1 , o) is non trivial.

Next we state the proposition

(70) For every proper uniquely two divisible group A_2 holds $Vectors(A_2)$ is a space of free vectors.

Let A_2 be a proper uniquely two divisible group. Observe that $Vectors(A_2)$ is space of free vectors-like and non trivial.

One can prove the following two propositions:

⁸ The propositions (49)–(54) have been removed.

⁹ The proposition (56) has been removed.

¹⁰ The propositions (60)–(65) have been removed.

¹¹ The proposition (68) has been removed.

- (71) For every strict space A_1 of free vectors and for every element o of A_1 holds $A_1 = \text{Vectors}(\text{GroupVect}(A_1, o))$.
- (72) Let A_3 be a strict affine structure. Then A_3 is a space of free vectors if and only if there exists a proper uniquely two divisible group A_2 such that $A_3 = \text{Vectors}(A_2)$.
- Let X, Y be non empty loop structures and let f be a function from the carrier of X into the carrier of Y. We say that f is an isomorphism of X and Y if and only if the conditions (Def. 10) are satisfied.
- (Def. 10)(i) f is one-to-one,
 - (ii) $\operatorname{rng} f = \operatorname{the carrier of} Y$, and
 - (iii) for all elements a, b of X holds f(a+b) = f(a) + f(b) and $f(0_X) = 0_Y$ and f(-a) = -f(a).
 - Let X, Y be non empty loop structures. We say that X, Y are isomorph if and only if:
- (Def. 11) There exists a function from the carrier of X into the carrier of Y which is an isomorphism of X and Y.

In the sequel A_2 denotes a proper uniquely two divisible group and f denotes a function from the carrier of A_2 into the carrier of A_2 .

Next we state four propositions:

- (75)¹² Let o' be an element of A_2 and o be an element of $\operatorname{Vectors}(A_2)$. Suppose for every element x of A_2 holds f(x) = o' + x and o = o'. Let a, b be elements of A_2 . Then $f(a+b) = (\operatorname{Padd} o)(f(a), f(b))$ and $f(0_{(A_2)}) = 0_{\operatorname{GroupVect}(\operatorname{Vectors}(A_2), o)}$ and $f(-a) = (\operatorname{Pcom} o)(f(a))$.
- (76) For every element o' of A_2 such that for every element b of A_2 holds f(b) = o' + b holds f is one-to-one.
- (77) Let o' be an element of A_2 and o be an element of $Vectors(A_2)$. Suppose that for every element b of A_2 holds f(b) = o' + b. Then $rng f = the carrier of Group <math>Vect(Vectors(A_2), o)$.
- (78) Let A_2 be a proper uniquely two divisible group, o' be an element of A_2 , and o be an element of Vectors(A_2). If o = o', then A_2 , GroupVect(Vectors(A_2), o) are isomorph.

REFERENCES

- [1] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl.
- [2] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [7] Grzegorz Lewandowski and Krzysztof Prażmowski. A construction of an abstract space of congruence of vectors. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/tdgroup.html.
- [8] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/analoaf.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.

¹² The propositions (73) and (74) have been removed.

- [10] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_l.html.
- $[11] \enskip \textbf{Zinaida Trybulec. Properties of subsets. } \textit{Journal of Formalized Mathematics}, \textbf{1, 1989. } \texttt{http://mizar.org/JFM/Vol1/subset_1.html.}$
- [12] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received September 24, 1990

Published January 2, 2004
