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Summary. We introduce the notion of weak directed geometrical bundle. We prove
representation theorems for directed and weak directed geometrical bundles which establishes
a one-to-one correspondence between such structures and appropriate 2-divisible abelian groups.
To this aim we construct over arbitrary weak directed geometrical bundle a group defined en-
tirely in terms of geometrical notions — the group of (abstract) “free vectors”.

MML Identifier: AFVECTO.

WWW: http://mizar.org/JFM/Vol2/afvect0.html

The articles|[9], [[5], [[11], [T1], 8], [[7], 18], 14], [2], [12], [6], and[[10] provide the notation and
terminology for this paper.

Letl1 be a non empty affine structure. We say thas weak affine vector space-like if and only
if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For all elements, b, c of I; such that,b ]| ¢,c holdsa=b,
(i) for all elementsa, b, ¢, d, p, g of I1 such tha,b || p,qandc,d || p,qholdsa,b ] c,d,
(i)  for all elementsa, b, c of 11 there exists an elemedtof |; such that, b c,d,
(iv) forall elements, b, c,a, b/, c of I; such thag, b &, anda,c ]| &,c holdsb,c | b/,c,
(v) for all elements, ¢ of I; there exists an elemehtof I; such tha, b ]| b, c, and
(vi) forall elementsa, b, ¢, d of 11 such thag, b || c,d holdsa,c || b,d.

Let us observe that there exists a non empty affine structure which is strict, non trivial, and weak
affine vector space-like.

A weak affine vector space is a non trivial weak affine vector space-like non empty affine struc-
ture.

Let us note that every non empty affine structure which is space of free vectors-like is also weak
affine vector space-like.

We follow the rules; is a weak affine vector space aad, c, d, f,a,b',c,d’, f', p,q,r,0
are elements o\;.

Next we state a number of propositions:
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@l abl ab.

(3) aalaa

(4) Ifabl cd,thenc,d] ab.

(5) Ifa,b] ac, thenb=c.

(6) Ifa,b]c,danda,blc,d, thend=d".
(7) Foralla, bholdsa,all b,b.

(8) Ifabllc,d,thenb,alld,c.
(9) Ifa,b]fc,danda,c]| b,d, thenb=b'"
(10) Ifb,c|W,c anda,d | b,canda,d’ ||V, c, thend =d'.
(11) Ifa,b]l @,b andc,d | b,aandc,d' || b',a, thend =d'.
(12) Ifa,b]l &,b andc,d | c,d andb, f || c,dandb/, f' || ¢’,d’, thena, f || &, f'.
(13) Ifa,b]l a,b' anda,c c,b/, thenb,c] c,a.

Let us consideA; and let us consides, b. We say thah, b are in a maximal distance if and
only if:

(Def.2) a,b] b,aanda#b.

Let us notice that the predicadeb are in a maximal distance is irreflexive and symmetric.
The following three propositions are true:

(16F] There exish, b such thak # b anda, b are not in a maximal distance.

(18E] Suppose, b are in a maximal distance amglc are in a maximal distance. Thén= c or
b, c are in a maximal distance.

(19) If a, bare in a maximal distance amdb || ¢, d, thenc, d are in a maximal distance.

Let us consideA; and let us conside, b, c. We say thab is a midpoint ofa, ¢ if and only if:
(Def. 3) a,b]b,c.

Next we state a number of propositions:

(Zlﬁ] If bis a midpoint ofa, ¢, thenb is a midpoint ofc, a.

(22) bis a midpoint ofa, biff a=bh.

(23) bis amidpoint ofa, aiff a=b ora, b are in a maximal distance.

(24) There existd such thab is a midpoint ofa, c.

(25) Suppose is a midpoint ofa, ¢ andb/’ is a midpoint ofa, c. Thenb=b orb, b/ are in a
maximal distance.

(26) There exists such thab is a midpoint ofa, c.
(27) If bis a midpoint ofa, c andb is a midpoint ofa, ¢/, thenc=c'.

(28) If bis a midpoint ofa, c andb, b’ are in a maximal distance, théhis a midpoint ofa, c.

1 The proposition (1) has been removed.

2 The propositions (14) and (15) have been removed.
3 The proposition (17) has been removed.

4 The proposition (20) has been removed.
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(29) Supposé is a midpoint ofa, c andb’ is a midpoint ofa, ¢ andb, b/ are in a maximal
distance. Thea=C'.

(30) If pis a midpoint ofa, @ andp is a midpoint ofo, b/, thena,b || b/, &

(31) Supposep is a midpoint ofa, @ andq is a midpoint ofb, b’ and p, g are in a maximal
distance. Thea,b || b',a'.

Let us consideA; and let us considex, b. The functor PSyrta, b) yielding an element ofy is
defined by:

(Def. 4) ais a midpoint ofb, PSyn{a,b).
One can prove the following propositions:
(33F PSym(p,a) =biff a,p | p,b.
(35@ PSym(p,a) = aiff a= pora, p are in a maximal distance.
(36) PSyntp,PSyn(p,a)) =a.
(37) If PSym(p,a) = PSyn(p,b), thena=bh.
(38) There exista such that PSyitp,a) = b.
(39) ablf PSyn{p,b),PSyn(p,a).
(40) a,b]l c,diff PSym(p,a),PSym(p,b) || PSym(p,c),PSyn(p,d).
(41) a, barein a maximal distance iff PSyim a), PSyn{p,b) are in a maximal distance.
(42) bis amidpoint ofa, ciff PSym(p,b) is a midpoint of PSyrtp,a), PSyn{p,c).
(43) PsSyntip,a) = PSyn{q,a) iff p=qor p, gare in a maximal distance.
(44) PSyntq, PSyn(p,PSyn(q,a))) = PSyn(PSyn(q, p),a).

(45) PSynip,PSyn(g,a)) = PSym(q,PSyn{p,a)) if and only if one of the following condi-
tions is satisfied:

() p=gqor
(i) p, gare in a maximal distance, or
(i) g, PSymp,q) are in a maximal distance.

(46) PSyntp,PSym(q,PSyntr,a))) = PSynmr, PSyr(q,PSynt(p,a))).
(47) There existsl such that PSyifa, PSynib, PSymnc, p))) = PSyn(d, p).
(48) There exists such that PSyifa, PSyn{c, p)) = PSym(c,PSym(b, p)).

Let us consideA, o and let us consides, b. The functor Pad@, a, b) yielding an element of
A; is defined as follows:

(Def. 5) o,a]l b,Paddo,a,b).

Let us consideA;, oand let us considex. We introduce Pcolfo, a) as a synonym of PSyfu, a).
Let us consideA;, 0. The functor Padd yields a binary operation on the carrier&f and is
defined by:

(Def. 7 For alla, b holds(Padd)(a, b) = Paddo,a,b).

5 The proposition (32) has been removed.
6 The proposition (34) has been removed.
7 The definition (Def. 6) has been removed.
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Let us consideAs, 0. The functor Pcoro yields a unary operation on the carrierff and is
defined as follows:

(Def. 8) For everya holds(Pcom)(a) = Pconfo, a).

Let us consideAq, 0. The functor GroupVe¢#, 0) yields a strict loop structure and is defined
by:

(Def. 9) GroupVedtAs,0) = (the carrier ofA;, Padd, 0).

Let us consideAq, 0. One can verify that GroupVe@g, 0) is non empty.
Next we state two propositions:

(55 The carrier of GroupVe¢h\,0) = the carrier ofA; and the addition of GroupVe@;,0) =
Padd and the zero of GroupVe@;,0) = o.

(57 For all elements, b of GroupVectAs,0) and for all elements’, b’ of A3 such thah =&
andb = b’ holdsa+ b = (Padd)(a, b).

Let us consided, 0. Note that GroupVe¢h,0) is Abelian, add-associative, right zeroed, and
right complementable.
Next we state two propositions:

(58) For every elemera of GroupVectA;,0) and for every elemerd’ of A; such thata = &
holds—a = (Pconm)(&').

(59) CbroupVec(Al,o) =0

In the sequed, b denote elements of GroupVéat, o).
Next we state the proposition

(66@ For everya there existd such thab+b=a.

Let us consideA;, 0. One can verify that GroupVe@;, 0) is 2-divisible.
In the sequeR; denotes a space of free vectors ardknotes an element 8f.
Next we state the proposition

(67) For every elemena of GroupVectA;,0) such thata + a = Ogoupvecta;,0) holds a =
OG roupVectA;,0)

Let us consideAq, 0. One can check that GroupVéai, o) is Fanoian.

Let us note that there exists a uniquely 2-divisible group which is strict and non trivial.
A proper uniquely two divisible group is a non trivial uniquely 2-divisible group.

Next we state the proposition

(69E GroupVectAy,0) is a proper uniquely two divisible group.

Let us consideA, 0. Note that GroupVe¢hs,0) is non trivial.
Next we state the proposition

(70) For every proper uniquely two divisible grodp holds VectoréA;) is a space of free
vectors.

Let A, be a proper uniquely two divisible group. Observe that Vecfersis space of free
vectors-like and non trivial.
One can prove the following two propositions:

8 The propositions (49)—(54) have been removed.
9 The proposition (56) has been removed.
10 The propositions (60)—(65) have been removed.
11 The proposition (68) has been removed.
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(71) For every strict spacé; of free vectors and for every elemeatof A; holds A; =
VectorgGroupVectAs,0)).

(72) LetAgs be a strict affine structure. The) is a space of free vectors if and only if there
exists a proper uniquely two divisible groép such thatd; = VectorgAy).

Let X, Y be non empty loop structures and lebe a function from the carrier of into the
carrier ofY. We say thaff is an isomorphism oX andY if and only if the conditions (Def. 10) are
satisfied.

(Def. 10)(i) f is one-to-one,
(i) rngf =the carrier ofY, and
(i)  for all elementsa, b of X holds f(a+b) = f(a) + f(b) and f(0x) = Oy and f(—a) =
—f(a).
Let X, Y be non empty loop structures. We say tKalf are isomorph if and only if:

(Def. 11) There exists a function from the carriepointo the carrier ofY which is an isomorphism
of X andY.

In the sequel; denotes a proper uniquely two divisible group andenotes a function from
the carrier ofA; into the carrier ofA,.
Next we state four propositions:

(75 Let 0’ be an element of; ando be an element of Vectof8,). Suppose for every ele-
mentx of Ay holds f(x) = o'+ xando = 0. Let a, b be elements o”,. Thenf(a+b) =

(PadCb) ( f (a)a f (b)) and f (O(Az)) = OGroupVec(Vectors{Az),o) andf (*a) - (PCOfT’O) ( f (a))

(76) For every elemerd of A, such that for every elemehtof A; holds f (b) = o + b holds f
is one-to-one.

(77) Letd be an element of; ando be an element of Vectofa;). Suppose that for every
elementb of A; holds f (b) = 0’ +b. Then rngf = the carrier of GroupVe¢VectorgAy),0).

(78) LetA, be a proper uniguely two divisible groug,be an element o4, ando be an element
of VectorgAy). If o= 0, thenA,, GroupVectVectorgAy),0) are isomorph.
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