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Summary. With every affine spacA we correlate two incidence structures. The first,
called Inc-ProjSp}), is the usual projective closure &f i.e. the structure obtained fro
by adding directions of lines and planes/f The second, called projective horizon/Afis
the structure built from directions. We prove that Inc-Prof§p$é always a projective space,
and projective horizon oA is a projective space providedis at least 3-dimensional. Some
evident relationships between projective and affine configurational axioms that may Kold in
and in Inc-ProjSpX) are established.

MML Identifier: AFPROJ.

WWW: http://mizar.org/JFM/Vol2/afproj.html

The articles[[9],[2],[11],[8],[18],012],[114],11],15],06],07],13],[10], and[4] provide the notation
and terminology for this paper.

We follow the rules:A; denotes an affine spack, K, M, X, Y denote subsets &, andx, y
denote sets.

Next we state several propositions:

(1) If Ay is an affine plane and = the carrier ofA;, thenX is a plane.
(2) If Ay is an affine plane anH is a plane, theiX = the carrier ofA;.

(3) If Ay is an affine plane anX is a plane an¥ is a plane, theiX =Y.
(4) If X =the carrier ofA; andX is a plane, ther; is an affine plane.

(5) If Anot//K andA||X andA||Y andK||X andK]||Y andAis a line anK is a line andX is
aplane and is a plane, theX|JY.

(6) If Xis a plane and\||X andX||Y, thenA||Y.

Let us consideA;. The lines ofA; yielding a family of subsets d4; is defined as follows:
(Def. 1) Thelines ofA; = {A: Ais aling}.

Let us consideA;. The planes of\; yielding a family of subsets d4; is defined as follows:
(Def. 2) The planes oAy = {A: Ais a plané.

The following propositions are true:

(7) For everyx holdsx € the lines ofA; iff there existsX such thatk = X andX is a line.
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(8) For everyx holdsx € the planes of\; iff there existsX such thak = X andX is a plane.

Let us consideA;. The parallelity of lines of\; yielding an equivalence relation of the lines of
A, is defined by:

(Def. 3) The parallelity of lines of = {(K, M) : Kiis alineA M is a lineA K||M}.

Let us consideA;. The parallelity of planes o4, yielding an equivalence relation of the planes
of A is defined by:

(Def. 4) The parallelity of planes & = {{X,Y) : X isa planeA Y is a planeA X||Y}.

Let us consideA, X. Let us assume that is a line. The direction oK yields a subset of the
lines of A; and is defined by:
(Def. 5) The direction oK = [X]

the parallelity of lines ofA;

Let us consideA;, X. Let us assume that is a plane. The direction of yielding a subset of
the planes oA is defined as follows:
(Def' 6) The direction oK = [X]the parallelity of planes of\; *

We now state several propositions:

(9) If Xisaline, then for every holdsx € the direction oiX iff there existsY such thak =Y
andy is a line andX||Y.

(10) If Xis a plane, then for everyholdsx € the direction oX iff there existsy such thak =Y
andY is a plane an&||Y.

(11) If Xisaline andy is a line, then the direction of = the direction ofY iff X //'Y.
(12) If X is aline and is a line, then the direction of = the direction ofy iff X||Y.
(13) If X is a plane an¥ is a plane, then the direction ¥f= the direction ofY iff X||Y.
Let us consideA;. The directions of lines oy yielding a non empty set is defined as follows:
(Def. 7) The directions of lines & = Classes (the parallelity of lines 84).
Let us consideA;. The directions of planes &f; yielding a non empty set is defined as follows:
(Def. 8) The directions of planes 8§ = Classes (the parallelity of planesAf).
One can prove the following propositions:

(14) For everyx holds x € the directions of lines ofy; iff there existsX such thatx = the
direction ofX andX is a line.

(15) Let givenx. Thenx € the directions of planes & if and only if there existX such that
x = the direction ofX andX is a plane.

(16) The carrier o1 misses the directions of lines Af.
(17) If Agis an affine plane, then the lines &f misses the directions of planesAf.

(18) For everyx holdsx € [:the lines ofA;, {1} ] iff there existsX such thaix = (X, 1) andX
is aline.

(19) Let givenx. Thenx € [:the directions of planes d&;, {2} ] if and only if there existX
such tha = (the direction ofX, 2) andX is a plane.

Let us consideA;. The projective points ové; yielding a non empty set is defined by:

(Def. 9) The projective points ovéq = (the carrier ofA;) U (the directions of lines ofy).
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Let us consideA;. The functorL(A;) yields a non empty set and is defined as follows:
(Def. 10) L(A1) = [the lines ofAq, {1}]U[the directions of planes @, {2} ].

Let us considefy. The functorl ) yielding a relation between the projective points o%er
andL(A;) is defined by the condition (Def. 11).
(Def. 11) Letgiverx,y. Then(x, y) € |5, if and only if one of the following conditions is satisfied:

(i) there existK such thaK is a line buty = (K, 1) butx € the carrier ofA; andx € K or
x = the direction oK, or

(i) there existK, X such thatK is a line andX is a plane anc = the direction ofK and
y = (the direction ofX, 2) andK]||X.

Let us consideA;. The incidence of directions @&; yielding a relation between the directions
of lines of A; and the directions of planes &f is defined by the condition (Def. 12).

(Def. 12) Let giverx, y. Then(x, y) € the incidence of directions @, if and only if there exis®,
X such thatx = the direction ofA andy = the direction ofX andA is a line andX is a plane
andA||X.

Let us consideA;. The functor Inc-ProjS{#;) yielding a strict projective incidence structure
is defined by:

(Def. 13)  Inc-ProjSpAq) = (the projective points ovey, L(Aq),l(ay))-

Let us consideA;. The projective horizon of\; yields a strict projective incidence structure
and is defined by the condition (Def. 14).

(Def. 14) The projective horizon @&; = (the directions of lines of, the directions of planes @,
the incidence of directions d).

Next we state several propositions:

(20) Letgivenx. Thenxis a point of Inc-ProjSf;) if and only if one of the following condi-
tions is satisfied:

(i) xisanelementofy, or
(i) there existsX such thak = the direction ofX andX is a line.

(21) xis an element of the points of the projective horizonAgfif and only if there existsX
such tha = the direction ofX andX is a line.

(22) If x is an element of the points of the projective horizonAgf thenx is a point of
Inc-ProjSgA.).

(23) Letgivenx. Thenxis a line of Inc-ProjSpA ) if and only if there existX such thak = (X,
1) andX is a line orx = (the direction ofX, 2) andX is a plane.

(24) xis an element of the lines of the projective horizorAgfif and only if there existX such
thatx = the direction ofX andX is a plane.

(25) If x is an element of the lines of the projective horizonAaf then (x, 2) is a line of
Inc-ProjSgAL).

For simplicity, we use the following conventiom:denotes an element éf;, X, Y, X’ denote
subsets of\1, a, p, q denote points of Inc-Proj$pa ), andA denotes a line of Inc-Proj$a; ).
The following propositions are true:

(26) Ifx=aand(X, 1) = A, thenalies onAiff X is aline and € X.

(27) If x=aand(the direction ofX, 2) = AandX is a plane, thea does not lie orA.
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(28) If a=the direction ofY and(X, 1) = AandY is a line andX is a line, thera lies onA iff
Y||X.

(29) Suppose = the direction ofyY andA = (the direction ofX, 2) andY is a line andX is a
plane. Theralies onAif and only if Y||X.

(30) If X is aline anda = the direction ofX andA = (X, 1), thenalies onA.

(31) Suppos« is a line andY is a plane an C Y anda = the direction ofX andA = (the
direction ofY, 2). Thenalies onA.

(32) Suppos¢ is a plane anX CY and X’ // X anda = the direction ofX’ and A = (the
direction ofY, 2). Thenalies onA.

(33) If A= (the direction ofX, 2) andX is a plane and lies onA, thenais not an element of
A1

(34) IfA=(X,1) andX is a line andp lies onA and p is not an element of\;, thenp = the
direction ofX.

(35) Supposé = (X, 1) andX is a line andp lies onA anda lies onA anda # p andp is not
an element of the carrier éf;. Thenais an element oA;.

(36) Letabe an element of the points of the projective horizoAp&ndA be an element of the
lines of the projective horizon &%;. Supposea = the direction ofX andA = the direction of
Y andX is aline andy is a plane. Thealies onAif and only if X||Y.

(37) Letabe an element of the points of the projective horizomgfa' be an element of the
points of Inc-ProjSpA;), A be an element of the lines of the projective horizoMgfandA’
be a line of Inc-ProjSgA). If @ =aandA’ = (A, 2), thenalies onAiff & lies onA'.

In the sequeP, Q are lines of Inc-ProjS@#\;).
Next we state several propositions:

(38) Leta, b be elements of the points of the projective horizopfandA, K be elements of
the lines of the projective horizon &f,. Suppose lies onA anda lies onK andb lies onA
andb lies onK. Thena=borA=K.

(39) LetAbe an element of the lines of the projective horizogf Then there exist elements
a, b, c of the points of the projective horizon 8§ such that lies onA andb lies onA andc
lies onA anda # b andb # candc # a.

(40) Leta, b be elements of the points of the projective horizonA@f Then there exists an
elementA of the lines of the projective horizon &§ such that lies onA andb lies onA.

(41) Letx, y be elements of the points of the projective horizorAgfand X be an element of
the lines of Inc-ProjSfA; ). Suppose # y and(x, X) € the incidence of Inc-Proj§py) and
(y, X) € the incidence of Inc-Proj§i). Then there exists an elemenof the lines of the
projective horizon of\; such thaiX = (Y, 2).

(42) Letxbe apoint of Inc-ProjS@\; ) andX be an element of the lines of the projective horizon
of A1. Supposg(x, (X, 2}) € the incidence of Inc-Proj3pu). Thenx is an element of the
points of the projective horizon ;.

(43) Suppos¥ is a plane anK is a line andX’ is a line andX C Y andX’ CY andP = (X, 1)
andQ = (X', 1). Then there existg such thag lies onP andq lies onQ.

(44) Leta, b, c, d, p be elements of the points of the projective horizoAgfandM, N, P, Q
be elements of the lines of the projective horizorA¢f Suppose thaa lies onM andb lies
onM andc lies onN andd lies onN and p lies onM andp lies onN anda lies onP andc
lies onP andb lies onQ andd lies onQ andp does not lie orP and p does not lie orQ and
M # N. Then there exists an elemeanof the points of the projective horizon 8§ such that
g lies onP andq lies onQ.
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Let us conside”;. Note that Inc-ProjS@) is partial, linear, at least 2-dimensional, at least
3-rank, and Vebleian.

Let us observe that there exists a projective space defined in terms of incidence which is strict
and 2-dimensional.

Let Aq be an affine plane. Observe that Inc-Prdj&y) is 2-dimensional.

The following propositions are true:

(45) If Inc-ProjSfA:) is 2-dimensional, theA; is an affine plane.

(46) Supposé\; is not an affine plane. Then the projective horizorAgfis a projective space
defined in terms of incidence.

(47) Suppose the projective horizon Af is a projective space defined in terms of incidence.
ThenA; is not an affine plane.

(48) LetM, N be subsets oA; ando, a, b, ¢, &, b, ¢ be elements of the carrier 8f. Suppose
thatM is a line andN is a line andV # N ando € M ando € N ando # a ando # & and
0+#bando#b' ando+# cando# ¢ andac M andbe M andc e M anda € N andb/ e N
andc’ € Nanda,b’ || b,a andb,c’ || c,b’ anda=borb=cora=c. Thena,c | c,d.

(49) If Inc-ProjSgAs) is Pappian, theA is Pappian.

(50) LetA, P,Cbe subsets o&; ando, a, b, c, &, I, ¢’ be elements of the carrier 8f. Suppose
thato € Aando € P ando € C ando # aando # bando # candac Aanda € Aandb e P
andb’ € Pandc € C andc’ € CandAis aline andP is a line andC is a line andA # P and
A#Candab| &,b anda,c]] &,c ando=a ora=4a. Thenb,c|[ b/,c.

(51) If Inc-ProjSgAs) is Desarguesian, thely is Desarguesian.

(52) If Inc-ProjSgAs) is Fanoian, thed\ is Fanoian.
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