A Projective Closure and Projective Horizon of an Affine Space

Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. With every affine space A we correlate two incidence structures. The first, called Inc-ProjSp(A), is the usual projective closure of A, i.e. the structure obtained from A by adding directions of lines and planes of A. The second, called projective horizon of A, is the structure built from directions. We prove that Inc-ProjSp(A) is always a projective space, and projective horizon of A is a projective space provided A is at least 3-dimensional. Some evident relationships between projective and affine configurational axioms that may hold in A and in Inc-ProjSp(A) are established.

MML Identifier: AFPROJ.

WWW: http://mizar.org/JFM/Vol2/afproj.html

The articles [9], [2], [11], [8], [13], [12], [14], [1], [5], [6], [7], [3], [10], and [4] provide the notation and terminology for this paper.

We follow the rules: A_1 denotes an affine space, A, K, M, X, Y denote subsets of A_1 , and X, Y denote sets.

Next we state several propositions:

- (1) If A_1 is an affine plane and X = the carrier of A_1 , then X is a plane.
- (2) If A_1 is an affine plane and X is a plane, then X = the carrier of A_1 .
- (3) If A_1 is an affine plane and X is a plane and Y is a plane, then X = Y.
- (4) If X = the carrier of A_1 and X is a plane, then A_1 is an affine plane.
- (5) If A not //K and A||X and A||Y and K||X and K||Y and A is a line and K is a line and X is a plane and Y is a plane, then X||Y.
- (6) If *X* is a plane and A||X and X||Y, then A||Y.

Let us consider A_1 . The lines of A_1 yielding a family of subsets of A_1 is defined as follows:

(Def. 1) The lines of $A_1 = \{A : A \text{ is a line}\}.$

Let us consider A_1 . The planes of A_1 yielding a family of subsets of A_1 is defined as follows:

(Def. 2) The planes of $A_1 = \{A : A \text{ is a plane}\}.$

The following propositions are true:

(7) For every x holds $x \in$ the lines of A_1 iff there exists X such that x = X and X is a line.

(8) For every x holds $x \in$ the planes of A_1 iff there exists X such that x = X and X is a plane.

Let us consider A_1 . The parallelity of lines of A_1 yielding an equivalence relation of the lines of A_1 is defined by:

(Def. 3) The parallelity of lines of $A_1 = \{ \langle K, M \rangle : K \text{ is a line } \land M \text{ is a line } \land K | |M \}.$

Let us consider A_1 . The parallelity of planes of A_1 yielding an equivalence relation of the planes of A_1 is defined by:

(Def. 4) The parallelity of planes of $A_1 = \{\langle X, Y \rangle : X \text{ is a plane } \land Y \text{ is a plane } \land X | |Y \}.$

Let us consider A_1 , X. Let us assume that X is a line. The direction of X yields a subset of the lines of A_1 and is defined by:

(Def. 5) The direction of $X = [X]_{\text{the parallelity of lines of } A_1}$.

Let us consider A_1 , X. Let us assume that X is a plane. The direction of X yielding a subset of the planes of A_1 is defined as follows:

(Def. 6) The direction of $X = [X]_{\text{the parallelity of planes of } A_1}$.

We now state several propositions:

- (9) If *X* is a line, then for every *x* holds $x \in$ the direction of *X* iff there exists *Y* such that x = Y and *Y* is a line and X | Y.
- (10) If X is a plane, then for every x holds $x \in$ the direction of X iff there exists Y such that x = Y and Y is a plane and $X \mid Y$.
- (11) If X is a line and Y is a line, then the direction of X = the direction of Y iff X // Y.
- (12) If X is a line and Y is a line, then the direction of X =the direction of Y iff X||Y.
- (13) If X is a plane and Y is a plane, then the direction of X =the direction of Y iff X||Y.

Let us consider A_1 . The directions of lines of A_1 yielding a non empty set is defined as follows:

(Def. 7) The directions of lines of A_1 = Classes (the parallelity of lines of A_1).

Let us consider A_1 . The directions of planes of A_1 yielding a non empty set is defined as follows:

(Def. 8) The directions of planes of A_1 = Classes (the parallelity of planes of A_1).

One can prove the following propositions:

- (14) For every x holds $x \in$ the directions of lines of A_1 iff there exists X such that x = the direction of X and X is a line.
- (15) Let given x. Then $x \in$ the directions of planes of A_1 if and only if there exists X such that x = the direction of X and X is a plane.
- (16) The carrier of A_1 misses the directions of lines of A_1 .
- (17) If A_1 is an affine plane, then the lines of A_1 misses the directions of planes of A_1 .
- (18) For every x holds $x \in [$: the lines of A_1 , $\{1\}$:] iff there exists X such that $x = \langle X, 1 \rangle$ and X is a line.
- (19) Let given x. Then $x \in [$: the directions of planes of $A_1, \{2\}:]$ if and only if there exists X such that $x = \langle$ the direction of X, $2 \rangle$ and X is a plane.

Let us consider A_1 . The projective points over A_1 yielding a non empty set is defined by:

(Def. 9) The projective points over $A_1 =$ (the carrier of A_1) \cup (the directions of lines of A_1).

Let us consider A_1 . The functor $L(A_1)$ yields a non empty set and is defined as follows:

(Def. 10) $L(A_1) = [$: the lines of $A_1, \{1\}:] \cup [$: the directions of planes of $A_1, \{2\}:]$.

Let us consider A_1 . The functor $\mathbf{I}_{(A_1)}$ yielding a relation between the projective points over A_1 and $L(A_1)$ is defined by the condition (Def. 11).

- (Def. 11) Let given x, y. Then $\langle x, y \rangle \in \mathbf{I}_{(A_1)}$ if and only if one of the following conditions is satisfied:
 - (i) there exists K such that K is a line but $y = \langle K, 1 \rangle$ but $x \in$ the carrier of A_1 and $x \in K$ or x = the direction of K, or
 - (ii) there exist K, X such that K is a line and X is a plane and x = the direction of K and $y = \langle$ the direction of X, $2 \rangle$ and K|X.

Let us consider A_1 . The incidence of directions of A_1 yielding a relation between the directions of lines of A_1 and the directions of planes of A_1 is defined by the condition (Def. 12).

(Def. 12) Let given x, y. Then $\langle x, y \rangle \in$ the incidence of directions of A_1 if and only if there exist A, X such that x = the direction of A and y = the direction of X and A is a line and X is a plane and $A \mid X$.

Let us consider A_1 . The functor Inc-ProjSp(A_1) yielding a strict projective incidence structure is defined by:

(Def. 13) Inc-ProjSp(A_1) = \langle the projective points over $A_1, L(A_1), \mathbf{I}_{(A_1)} \rangle$.

Let us consider A_1 . The projective horizon of A_1 yields a strict projective incidence structure and is defined by the condition (Def. 14).

(Def. 14) The projective horizon of $A_1 = \langle$ the directions of lines of A_1 , the directions of planes of A_1 , the incidence of directions of $A_1 \rangle$.

Next we state several propositions:

- (20) Let given x. Then x is a point of Inc-ProjSp(A_1) if and only if one of the following conditions is satisfied:
 - (i) x is an element of A_1 , or
- (ii) there exists X such that x = the direction of X and X is a line.
- (21) x is an element of the points of the projective horizon of A_1 if and only if there exists X such that x = the direction of X and X is a line.
- (22) If x is an element of the points of the projective horizon of A_1 , then x is a point of Inc-ProjSp (A_1) .
- (23) Let given x. Then x is a line of Inc-ProjSp (A_1) if and only if there exists X such that $x = \langle X, 1 \rangle$ and X is a line or $x = \langle$ the direction of X, $2 \rangle$ and X is a plane.
- (24) x is an element of the lines of the projective horizon of A_1 if and only if there exists X such that x = the direction of X and X is a plane.
- (25) If x is an element of the lines of the projective horizon of A_1 , then $\langle x, 2 \rangle$ is a line of Inc-ProjSp (A_1) .

For simplicity, we use the following convention: x denotes an element of A_1 , X, Y, X' denote subsets of A_1 , a, p, q denote points of Inc-ProjSp(A_1), and A denotes a line of Inc-ProjSp(A_1). The following propositions are true:

- (26) If x = a and $\langle X, 1 \rangle = A$, then a lies on A iff X is a line and $x \in X$.
- (27) If x = a and \langle the direction of X, $2 \rangle = A$ and X is a plane, then a does not lie on A.

- (28) If a = the direction of Y and $\langle X, 1 \rangle = A$ and Y is a line and X is a line, then a lies on A iff Y | | X.
- (29) Suppose a = the direction of Y and $A = \langle$ the direction of X, 2 \rangle and Y is a line and X is a plane. Then a lies on A if and only if Y||X.
- (30) If X is a line and a = the direction of X and $A = \langle X, 1 \rangle$, then a lies on A.
- (31) Suppose X is a line and Y is a plane and $X \subseteq Y$ and a = the direction of X and A = (the direction of Y, 2). Then a lies on A.
- (32) Suppose Y is a plane and $X \subseteq Y$ and X' // X and a = the direction of X' and $A = \langle$ the direction of Y, $2 \rangle$. Then a lies on A.
- (33) If $A = \langle \text{the direction of } X, 2 \rangle$ and X is a plane and a lies on A, then a is not an element of A_1 .
- (34) If $A = \langle X, 1 \rangle$ and X is a line and p lies on A and p is not an element of A_1 , then p = the direction of X.
- (35) Suppose $A = \langle X, 1 \rangle$ and X is a line and p lies on A and a lies on A and $a \neq p$ and p is not an element of the carrier of A_1 . Then a is an element of A_1 .
- (36) Let a be an element of the points of the projective horizon of A_1 and A be an element of the lines of the projective horizon of A_1 . Suppose a = the direction of X and A = the direction of Y and X is a line and Y is a plane. Then a lies on A if and only if X | Y.
- (37) Let a be an element of the points of the projective horizon of A_1 , a' be an element of the points of Inc-ProjSp (A_1) , A be an element of the lines of the projective horizon of A_1 , and A' be a line of Inc-ProjSp (A_1) . If a' = a and $A' = \langle A, 2 \rangle$, then a lies on A iff a' lies on A'.

In the sequel P, Q are lines of Inc-ProjSp(A_1). Next we state several propositions:

- (38) Let a, b be elements of the points of the projective horizon of A_1 and A, K be elements of the lines of the projective horizon of A_1 . Suppose a lies on A and a lies on K and a lies on a and a lies on a and a lies on a lies on a and a lies on a and a lies on a lies on a and a lies on a
- (39) Let *A* be an element of the lines of the projective horizon of A_1 . Then there exist elements a, b, c of the points of the projective horizon of A_1 such that a lies on A and b lies on A and c lies on a and $a \neq b$ and $b \neq c$ and $c \neq a$.
- (40) Let a, b be elements of the points of the projective horizon of A_1 . Then there exists an element A of the lines of the projective horizon of A_1 such that a lies on A and b lies on A.
- (41) Let x, y be elements of the points of the projective horizon of A_1 and X be an element of the lines of Inc-ProjSp (A_1) . Suppose $x \neq y$ and $\langle x, X \rangle \in$ the incidence of Inc-ProjSp (A_1) and $\langle y, X \rangle \in$ the incidence of Inc-ProjSp (A_1) . Then there exists an element Y of the lines of the projective horizon of A_1 such that $X = \langle Y, 2 \rangle$.
- (42) Let x be a point of Inc-ProjSp (A_1) and X be an element of the lines of the projective horizon of A_1 . Suppose $\langle x, \langle X, 2 \rangle \rangle \in$ the incidence of Inc-ProjSp (A_1) . Then x is an element of the points of the projective horizon of A_1 .
- (43) Suppose Y is a plane and X is a line and X' is a line and $X \subseteq Y$ and $Y \subseteq Y$ and $P = \langle X, 1 \rangle$ and $Q = \langle X', 1 \rangle$. Then there exists q such that q lies on P and q lies on Q.
- (44) Let a, b, c, d, p be elements of the points of the projective horizon of A_1 and M, N, P, Q be elements of the lines of the projective horizon of A_1 . Suppose that a lies on M and b lies on M and c lies on C lies on C and C lies on C

Let us consider A_1 . Note that Inc-ProjSp(A_1) is partial, linear, at least 2-dimensional, at least 3-rank, and Vebleian.

Let us observe that there exists a projective space defined in terms of incidence which is strict and 2-dimensional.

Let A_1 be an affine plane. Observe that Inc-ProjSp(A_1) is 2-dimensional.

The following propositions are true:

- (45) If Inc-ProjSp(A_1) is 2-dimensional, then A_1 is an affine plane.
- (46) Suppose A_1 is not an affine plane. Then the projective horizon of A_1 is a projective space defined in terms of incidence.
- (47) Suppose the projective horizon of A_1 is a projective space defined in terms of incidence. Then A_1 is not an affine plane.
- (48) Let M, N be subsets of A_1 and o, a, b, c, a', b', c' be elements of the carrier of A_1 . Suppose that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b'$ and $o \neq b'$ and $o \neq c'$ and $o \neq c'$ and $o \neq b'$ and
- (49) If $Inc-ProjSp(A_1)$ is Pappian, then A_1 is Pappian.
- (50) Let A, P, C be subsets of A_1 and o, a, b, c, a', b', c' be elements of the carrier of A_1 . Suppose that $o \in A$ and $o \in P$ and $o \in C$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $a \in A$ and $a' \in A$ and $b' \in A$ and $a' \in A$ a
- (51) If $Inc-ProjSp(A_1)$ is Desarguesian, then A_1 is Desarguesian.
- (52) If $Inc-ProjSp(A_1)$ is Fanoian, then A_1 is Fanoian.

REFERENCES

- [1] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [2] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [3] Wojciech Leończuk, Henryk Oryszczyszyn, and Krzysztof Prażmowski. Planes in affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/aff_4.html.
- [4] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/incproj.html.
- [5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/analoaf.html.
- [6] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity part I. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/diraf.html.
- [7] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/aff_1.html.
- [8] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/egrel_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [10] Wojciech A. Trybulec. Axioms of incidency. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/incsp_1. html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [13] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

[14] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received December 17, 1990

Published January 2, 2004