Planes in Affine Spaces¹

Wojciech Leończuk Warsaw University Białystok Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. We introduce the notion of plane in affine space and investigate fundamental properties of them. Further we introduce the relation of parallelism defined for arbitrary subsets. In particular we are concerned with parallelisms which hold between lines and planes and between planes. We also define a function which assigns to every line and every point the unique line passing through the point and parallel to the given line. With the help of the introduced notions we prove that every at least 3-dimensional affine space is Desarguesian and translation.

MML Identifier: AFF_4.

WWW: http://mizar.org/JFM/Vol2/aff_4.html

The articles [4], [5], [1], [2], and [3] provide the notation and terminology for this paper.

We use the following convention: A_1 denotes an affine space, a, b, c, d, a', b', c', p, q denote elements of A_1 , and A, C, K, M, N, P, Q, X, Y, Z denote subsets of A_1 .

Next we state a number of propositions:

- (1) If $\mathbf{L}(p, a, a')$ or $\mathbf{L}(p, a', a)$ and if $p \neq a$, then there exists b' such that $\mathbf{L}(p, b, b')$ and $a, b \parallel a', b'$.
- (2) If a, b // A or b, a // A and if $a \in A$, then $b \in A$.
- (3) If *a*, *b* // *A* or *b*, *a* // *A* and if *A* // *K* or *K* // *A*, then *a*, *b* // *K* and *b*, *a* // *K*.
- (4) If a, b / / A or b, a / / A and if $a, b \parallel c, d$ or $c, d \parallel a, b$ and if $a \neq b$, then c, d / / A and d, c / / A.
- (5) If a, b / / M or b, a / / M and if a, b / / N or b, a / / N and if $a \neq b$, then M / / N and N / / M.
- (6) If a, b // M or b, a // M and if c, d // M or d, c // M, then $a, b \parallel c, d$ and $a, b \parallel d, c$.
- (7) If $A \parallel C$ or $C \parallel A$ and $a \neq b$ and $a, b \parallel c, d$ or $c, d \parallel a, b$ and $a \in A$ and $b \in A$ and $c \in C$, then $d \in C$.
- (8) Suppose that $q \in M$ and $q \in N$ and $a \in M$ and $a' \in M$ and $b \in N$ and $b' \in N$ and $q \neq a$ and $q \neq b$ and $M \neq N$ and $a, b \parallel a', b'$ or $b, a \parallel b', a'$ and M is a line and N is a line and q = a'. Then q = b'.
- (9) Suppose that $q \in M$ and $q \in N$ and $a \in M$ and $a' \in M$ and $b \in N$ and $b' \in N$ and $q \neq a$ and $q \neq b$ and $M \neq N$ and $a, b \parallel a', b'$ or $b, a \parallel b', a'$ and M is a line and N is a line and a = a'. Then b = b'.
- (10) If M // N or N // M and $a \in M$ and $a' \in M$ and $b \in N$ and $b' \in N$ and $M \neq N$ and $a, b \parallel a', b'$ or $b, a \parallel b', a'$ and a = a', then b = b'.

¹Supported by RPBP.III-24.C2.

- (11) There exists A such that $a \in A$ and $b \in A$ and A is a line.
- (12) If A is a line, then there exists q such that $q \notin A$.

Let us consider A_1 , K, P. The functor Plane(K, P) yielding a subset of A_1 is defined as follows:

(Def. 1) Plane $(K, P) = \{a : \bigvee_b (a, b // K \land b \in P)\}.$

Let us consider A_1 , X. We say that X is plane if and only if:

(Def. 2) There exist K, P such that K is a line and P is a line and K not // P and X = Plane(K, P).

- (13) If *K* is not a line, then $Plane(K, P) = \emptyset$.
- (14) If *K* is a line, then $P \subseteq \text{Plane}(K, P)$.
- (15) If K // P, then Plane(K, P) = P.
- (16) If K // M, then Plane(K, P) = Plane(M, P).
- (17) Suppose that $p \in M$ and $a \in M$ and $b \in M$ and $p \in N$ and $a' \in N$ and $b' \in N$ and $p \notin P$ and $p \notin Q$ and $M \neq N$ and $a \in P$ and $a' \in P$ and $b \in Q$ and $b' \in Q$ and M is a line and N is a line and P is a line and Q is a line. Then P //Q or there exists q such that $q \in P$ and $q \in Q$.
- (18) Suppose $a \in M$ and $b \in M$ and $a' \in N$ and $b' \in N$ and $a \in P$ and $a' \in P$ and $b \in Q$ and $b' \in Q$ and $M \neq N$ and M / / N and P is a line and Q is a line. Then P / / Q or there exists q such that $q \in P$ and $q \in Q$.
- (19) If *X* is a plane and $a \in X$ and $b \in X$ and $a \neq b$, then $\text{Line}(a, b) \subseteq X$.
- (20) If K is a line and P is a line and Q is a line and K not // P and K not // Q and $Q \subseteq \text{Plane}(K, P)$, then Plane(K, Q) = Plane(K, P).
- (21) If K is a line and P is a line and Q is a line and $Q \subseteq \text{Plane}(K, P)$, then P //Q or there exists q such that $q \in P$ and $q \in Q$.
- (22) If X is a plane and M is a line and N is a line and $M \subseteq X$ and $N \subseteq X$, then M // N or there exists q such that $q \in M$ and $q \in N$.
- (23) If *X* is a plane and $a \in X$ and $M \subseteq X$ and $a \in N$ and M // N or N // M, then $N \subseteq X$.
- (24) If X is a plane and Y is a plane and $a \in X$ and $b \in X$ and $a \in Y$ and $b \in Y$ and $X \neq Y$ and $a \neq b$, then $X \cap Y$ is a line.
- (25) If X is a plane and Y is a plane and $a \in X$ and $b \in X$ and $c \in X$ and $a \in Y$ and $b \in Y$ and $c \in Y$ and not L(a,b,c), then X = Y.
- (26) If X is a plane and Y is a plane and M is a line and N is a line and $M \subseteq X$ and $N \subseteq X$ and $M \subseteq Y$ and $N \subseteq Y$ and $M \neq N$, then X = Y.

Let us consider A_1 , a, K. Let us assume that K is a line. The functor $a \cdot K$ yields a subset of A_1 and is defined by:

(Def. 3) $a \in a \cdot K$ and $K // a \cdot K$.

One can prove the following propositions:

- (27) If A is a line, then $a \cdot A$ is a line.
- (28) If *X* is a plane and *M* is a line and $a \in X$ and $M \subseteq X$, then $a \cdot M \subseteq X$.
- (29) If *X* is a plane and $a \in X$ and $b \in X$ and $c \in X$ and $a, b \upharpoonright c, d$ and $a \neq b$, then $d \in X$.

We introduce *X* is a plane as a synonym of *X* is plane. Next we state a number of propositions:

- (30) If *A* is a line, then $a \in A$ iff $a \cdot A = A$.
- (31) If *A* is a line, then $a \cdot A = a \cdot (q \cdot A)$.
- (32) If K // M, then $a \cdot K = a \cdot M$.

Let us consider A_1, X, Y . The predicate X || Y is defined as follows:

(Def. 4) For all *a*, *A* such that $a \in Y$ and *A* is a line and $A \subseteq X$ holds $a \cdot A \subseteq Y$.

The following propositions are true:

- (33) If $X \subseteq Y$ and if X is a line and Y is a line or X is a plane and Y is a plane, then X = Y.
- (34) If X is a plane, then there exist a, b, c such that $a \in X$ and $b \in X$ and $c \in X$ and not L(a, b, c).
- (35) If *M* is a line and *X* is a plane, then there exists *q* such that $q \in X$ and $q \notin M$.
- (36) For all a, A such that A is a line there exists X such that $a \in X$ and $A \subseteq X$ and X is a plane.
- (37) There exists *X* such that $a \in X$ and $b \in X$ and $c \in X$ and *X* is a plane.
- (38) If $q \in M$ and $q \in N$ and M is a line and N is a line, then there exists X such that $M \subseteq X$ and $N \subseteq X$ and X is a plane.
- (39) If M // N, then there exists X such that $M \subseteq X$ and $N \subseteq X$ and X is a plane.
- (40) If *M* is a line and *N* is a line, then M // N iff M || N.
- (41) If *M* is a line and *X* is a plane, then M||X iff there exists *N* such that $N \subseteq X$ but M // N or N // M.
- (42) If *M* is a line and *X* is a plane and $M \subseteq X$, then M || X.
- (43) If *A* is a line and *X* is a plane and $a \in A$ and $a \in X$ and A || X, then $A \subseteq X$.

Let us consider A_1 , K, M, N. We say that K, M, N are coplanar if and only if:

(Def. 5) There exists X such that $K \subseteq X$ and $M \subseteq X$ and $N \subseteq X$ and X is a plane.

We now state a number of propositions:

- (44) Suppose K, M, N are coplanar. Then
- (i) K, N, M are coplanar,
- (ii) M, K, N are coplanar,
- (iii) M, N, K are coplanar,
- (iv) N, K, M are coplanar, and
- (v) N, M, K are coplanar.
- (45) Suppose A is a line and K is a line and M is a line and N is a line and M, N, K are coplanar and M, N, A are coplanar and $M \neq N$. Then M, K, A are coplanar.
- (46) Suppose K is a line and M is a line and X is a plane and $K \subseteq X$ and $M \subseteq X$ and $K \neq M$. Then K, M, A are coplanar if and only if $A \subseteq X$.
- (47) Suppose $q \in K$ and $q \in M$ and K is a line and M is a line. Then K, M, M are coplanar and M, K, M are coplanar and M, M, K are coplanar.
- (48) If A_1 is not an affine plane and X is a plane, then there exists q such that $q \notin X$.
- (49) Suppose that A_1 is not an affine plane and $q \in A$ and $q \in P$ and $q \in C$ and $q \neq a$ and $q \neq b$ and $q \neq c$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$. Then $b, c \parallel b', c'$.

- (50) If A_1 is not an affine plane, then A_1 is Desarguesian.
- (51) Suppose that A_1 is not an affine plane and A // P and A // C and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \parallel a', b'$ and $a, c \parallel a', c'$. Then $b, c \parallel b', c'$.
- (52) If A_1 is not an affine plane, then A_1 is translational.
- (53) If A_1 is an affine plane and not $\mathbf{L}(a,b,c)$, then there exists c' such that $a,c \parallel a',c'$ and $b,c \parallel b',c'$.
- (54) If not $\mathbf{L}(a,b,c)$ and $a' \neq b'$ and $a,b \parallel a',b'$, then there exists c' such that $a,c \parallel a',c'$ and $b,c \parallel b',c'$.
- (55) Suppose X is a plane and Y is a plane. Then X||Y if and only if there exist A, P, M, N such that A not // P and $A \subseteq X$ and $P \subseteq X$ and $M \subseteq Y$ and $N \subseteq Y$ and A // M or M // A and P // N or N // P.
- (56) If A // M and M || X, then A || X.
- (57) If X is a plane, then X || X.
- (58) If X is a plane and Y is a plane and X||Y, then Y||X.
- (59) If *X* is a plane, then $X \neq \emptyset$.
- (60) If X||Y and Y||Z and $Y \neq \emptyset$, then X||Z.
- (61) Suppose X is a plane and Y is a plane and Z is a plane and X||Y and Y||Z or X||Y and Z||Y or Y||X and Y||Z or Y||X and Z||Y. Then X||Z and Z||X.
- (62) If X is a plane and Y is a plane and $a \in X$ and $a \in Y$ and X || Y, then X = Y.
- (63) If X is a plane and Y is a plane and Z is a plane and X || Y and $X \neq Y$ and $a \in X \cap Z$ and $b \in X \cap Z$ and $c \in Y \cap Z$ and $d \in Y \cap Z$, then $a, b \parallel c, d$.
- (64) Suppose X is a plane and Y is a plane and Z is a plane and X || Y and $a \in X \cap Z$ and $b \in X \cap Z$ and $c \in Y \cap Z$ and $d \in Y \cap Z$ and $X \neq Y$ and $a \neq b$ and $c \neq d$. Then $X \cap Z //Y \cap Z$.
- (65) For all a, X such that X is a plane there exists Y such that $a \in Y$ and X || Y and Y is a plane.

Let us consider A_1 , a, X. Let us assume that X is a plane. The functor a + X yields a subset of A_1 and is defined as follows:

(Def. 6) $a \in a + X$ and X || a + X and a + X is a plane.

Next we state four propositions:

- (66) If *X* is a plane, then $a \in X$ iff a + X = X.
- (67) If X is a plane, then a + X = a + (q + X).
- (68) If *A* is a line and *X* is a plane and A || X, then $a \cdot A \subseteq a + X$.
- (69) If *X* is a plane and *Y* is a plane and X||Y, then a + X = a + Y.

PLANES IN AFFINE SPACES

REFERENCES

- Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/analoaf.html.
- [2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity part I. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/diraf.html.
- [3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/aff_1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received December 5, 1990

Published January 2, 2004