Classical Configurations in Affine Planes¹

Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. The classical sequence of implications which hold between Desargues and Pappus Axioms is proved. Formally Minor and Major Desargues Axiom (as suitable properties – predicates – of an affine plane) together with all its indirect forms are introduced; the same procedure is applied to Pappus Axioms. The so called Trapezium Desargues Axiom is also considered.

MML Identifier: AFF_2.

WWW: http://mizar.org/JFM/Vol2/aff_2.html

The articles [1], [2], and [3] provide the notation and terminology for this paper.

We adopt the following rules: A_1 is an affine plane, a, a', b, b', c, c', o are elements of A_1 , and A, C, K, M, N, P are subsets of A_1 .

Let us consider A_1 . We say that A_1 satisfies **PPAP** if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let given M, N, a, b, c, a', b', c'. Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a' \in N$ and $b' \in N$ and $c' \in N$ and $a, b' \upharpoonright b$, a' and $a' \in N$. Then $a, c' \upharpoonright c$, a'.

We introduce A_1 satisfies **PPAP** as a synonym of A_1 satisfies **PPAP**.

Let A_1 be an affine space. We say that A_1 is Pappian if and only if the condition (Def. 2) is satisfied

(Def. 2) Let M, N be subsets of A_1 and o, a, b, c, a', b', c' be elements of A_1 . Suppose that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b'$ and $o \neq b'$ and $o \neq c'$ and $o \neq c'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ a

We introduce A_1 satisfies **PAP** as a synonym of A_1 is Pappian.

Let us consider A_1 . We say that A_1 satisfies PAP_1 if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let given M, N, o, a, b, c, a', b', c'. Suppose that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b$ and $o \neq b'$ and $o \neq c'$ and $o \neq c'$ and $o \neq a'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ a

We introduce A_1 satisfies PAP_1 as a synonym of A_1 satisfies PAP_1 .

Let A_1 be an affine space. We say that A_1 is Desarguesian if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let A, P, C be subsets of A_1 and o, a, b, c, a', b', c' be elements of A_1 . Suppose that $o \in A$ and $o \in P$ and $o \in C$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $o \ne a$ and $o \ne b$ and $o \ne a$ and $o \ne a$ and $o \ne b$ and $o \ne a$ and $o \ne b$ and $o \ne a$ and $o \ne b$ and $o \ne a$ and $o \ne a$

1

© Association of Mizar Users

¹Supported by RPBP.III-24.C2.

- We introduce A_1 satisfies **DES** as a synonym of A_1 is Desarguesian.
 - Let us consider A_1 . We say that A_1 satisfies **DES**₁ if and only if the condition (Def. 5) is satisfied.
- (Def. 5) Let given A, P, C, o, a, b, c, a', b', c'. Suppose that $o \in A$ and $o \in P$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and $a' \in C$ a
- We introduce A_1 satisfies **DES**₁ as a synonym of A_1 satisfies **DES**₁. Let us consider A_1 . We say that A_1 satisfies **DES**₂ if and only if the condition (Def. 6) is satisfied.
- (Def. 6) Let given A, P, C, o, a, b, c, a', b', c'. Suppose that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $o \in A$ and $o \in A$ and $o \in C$ and $o \in$
- We introduce A_1 satisfies **DES**₂ as a synonym of A_1 satisfies **DES**₂.
- Let A_1 be an affine space. We say that A_1 is Moufangian if and only if the condition (Def. 7) is satisfied.
- (Def. 7) Let K be a subset of A_1 and o, a, b, c, a', b', c' be elements of A_1 . Suppose K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and $a, b \parallel a'$, b' and $a, c \parallel a'$, c' and $a, b \parallel K$. Then $b, c \parallel b'$, c'.
 - We introduce A_1 satisfies **TDES** as a synonym of A_1 is Moufangian.
 - Let us consider A_1 . We say that A_1 satisfies **TDES**₁ if and only if the condition (Def. 8) is satisfied.
- (Def. 8) Let given K, o, a, b, c, a', b', c'. Suppose K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \ne c$ and $a \ne b$ and $\mathbf{L}(o, a, a')$ and a, $b \parallel a'$, b' and b, $c \parallel b'$, c' and a, $c \parallel a'$, c' and a, $b \parallel K$. Then $\mathbf{L}(o, b, b')$.
 - We introduce A_1 satisfies **TDES**₁ as a synonym of A_1 satisfies **TDES**₁.
 - Let us consider A_1 . We say that A_1 satisfies **TDES**₂ if and only if the condition (Def. 9) is satisfied.
- (Def. 9) Let given K, o, a, b, c, a', b', c'. Suppose K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and b, $c \parallel b'$, c' and a, $c \parallel a'$, c' and a, $b \parallel a'$, b'.
 - We introduce A_1 satisfies **TDES**₂ as a synonym of A_1 satisfies **TDES**₂.
 - Let us consider A_1 . We say that A_1 satisfies **TDES**₃ if and only if the condition (Def. 10) is satisfied
- (Def. 10) Let given K, o, a, b, c, a', b', c'. Suppose K is a line and $o \in K$ and $c \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and a, $b \upharpoonright a'$, b' and a, $c \upharpoonright a'$, c' and b, $c \upharpoonright b'$, c' and a, $b \upharpoonright K$. Then $c' \in K$.
 - We introduce A_1 satisfies **TDES**₃ as a synonym of A_1 satisfies **TDES**₃.
 - Let A_1 be an affine space. We say that A_1 is translational if and only if the condition (Def. 11) is satisfied.
- (Def. 11) Let A, P, C be subsets of A_1 and a, b, c, a', b', c' be elements of A_1 . Suppose that $A /\!\!/ P$ and $A /\!\!/ C$ and $A \in A$ and A
 - We introduce A_1 satisfies **des** as a synonym of A_1 is translational.
 - Let us consider A_1 . We say that A_1 satisfies des_1 if and only if the condition (Def. 12) is satisfied.
- (Def. 12) Let given A, P, C, a, b, c, a', b', c'. Suppose that A // P and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and c

We introduce A_1 satisfies \mathbf{des}_1 as a synonym of A_1 satisfies \mathbf{des}_1 .

Let A_1 be an affine space. We say that A_1 satisfies pap if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let M, N be subsets of A_1 and a, b, c, a', b', c' be elements of A_1 . Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $b' \in N$ and $b' \in$

We introduce A_1 satisfies **pap** as a synonym of A_1 satisfies pap.

Let us consider A_1 . We say that A_1 satisfies \mathbf{pap}_1 if and only if the condition (Def. 14) is satisfied.

(Def. 14) Let given M, N, a, b, c, a', b', c'. Suppose that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \not \mid N$ and $M \neq N$ and $a' \in N$ and $b' \in N$ and $a, b' \upharpoonright b, a'$ and $b, c' \upharpoonright c, b'$ and $a, c' \upharpoonright c, a'$ and $a' \neq b'$. Then $c' \in N$.

We introduce A_1 satisfies pap_1 as a synonym of A_1 satisfies pap_1 .

The following propositions are true:

- $(15)^1$ A_1 satisfies **PAP** iff A_1 satisfies **PAP**₁.
- (16) A_1 satisfies **DES** iff A_1 satisfies **DES**₁.
- (17) If A_1 satisfies **TDES**, then A_1 satisfies **TDES**₁.
- (18) If A_1 satisfies **TDES**₁, then A_1 satisfies **TDES**₂.
- (19) If A_1 satisfies **TDES**₂, then A_1 satisfies **TDES**₃.
- (20) If A_1 satisfies **TDES**₃, then A_1 satisfies **TDES**.
- (21) A_1 satisfies **des** iff A_1 satisfies **des**₁.
- (22) A_1 satisfies **pap** iff A_1 satisfies **pap**₁.
- (23) If A_1 satisfies **PAP**, then A_1 satisfies **pap**.
- (24) A_1 satisfies **PPAP** iff A_1 satisfies **PAP** and A_1 satisfies **pap**.
- (25) If A_1 satisfies **PAP**, then A_1 satisfies **DES**.
- (26) If A_1 satisfies **DES**, then A_1 satisfies **TDES**.
- (27) If A_1 satisfies **TDES**₁, then A_1 satisfies **des**₁.
- (28) If A_1 satisfies **TDES**, then A_1 satisfies **des**.
- (29) If A_1 satisfies **des**, then A_1 satisfies **pap**.

REFERENCES

- [1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/analoaf.html.
- [2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity part I. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/diraf.html.

¹ The propositions (1)–(14) have been removed.

[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/aff_1.html.

Received April 13, 1990

Published January 2, 2004
