Classical Configurations in Affine Planes¹ Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok **Summary.** The classical sequence of implications which hold between Desargues and Pappus Axioms is proved. Formally Minor and Major Desargues Axiom (as suitable properties – predicates – of an affine plane) together with all its indirect forms are introduced; the same procedure is applied to Pappus Axioms. The so called Trapezium Desargues Axiom is also considered. MML Identifier: AFF_2. WWW: http://mizar.org/JFM/Vol2/aff_2.html The articles [1], [2], and [3] provide the notation and terminology for this paper. We adopt the following rules: A_1 is an affine plane, a, a', b, b', c, c', o are elements of A_1 , and A, C, K, M, N, P are subsets of A_1 . Let us consider A_1 . We say that A_1 satisfies **PPAP** if and only if the condition (Def. 1) is satisfied. (Def. 1) Let given M, N, a, b, c, a', b', c'. Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a' \in N$ and $b' \in N$ and $c' \in N$ and $a, b' \upharpoonright b$, a' and $a' \in N$. Then $a, c' \upharpoonright c$, a'. We introduce A_1 satisfies **PPAP** as a synonym of A_1 satisfies **PPAP**. Let A_1 be an affine space. We say that A_1 is Pappian if and only if the condition (Def. 2) is satisfied (Def. 2) Let M, N be subsets of A_1 and o, a, b, c, a', b', c' be elements of A_1 . Suppose that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b'$ and $o \neq b'$ and $o \neq c'$ and $o \neq c'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ a We introduce A_1 satisfies **PAP** as a synonym of A_1 is Pappian. Let us consider A_1 . We say that A_1 satisfies PAP_1 if and only if the condition (Def. 3) is satisfied. (Def. 3) Let given M, N, o, a, b, c, a', b', c'. Suppose that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a'$ and $o \neq b$ and $o \neq b'$ and $o \neq c'$ and $o \neq c'$ and $o \neq a'$ and $o \neq a'$ and $o \neq b'$ and $o \neq a'$ a We introduce A_1 satisfies PAP_1 as a synonym of A_1 satisfies PAP_1 . Let A_1 be an affine space. We say that A_1 is Desarguesian if and only if the condition (Def. 4) is satisfied. (Def. 4) Let A, P, C be subsets of A_1 and o, a, b, c, a', b', c' be elements of A_1 . Suppose that $o \in A$ and $o \in P$ and $o \in C$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $o \ne a$ and $o \ne b$ a$ and $o \ne b$ and $o \ne a$ and $o \ne b$ and $o \ne a$ and $o \ne b$ and $o \ne a$ 1 © Association of Mizar Users ¹Supported by RPBP.III-24.C2. - We introduce A_1 satisfies **DES** as a synonym of A_1 is Desarguesian. - Let us consider A_1 . We say that A_1 satisfies **DES**₁ if and only if the condition (Def. 5) is satisfied. - (Def. 5) Let given A, P, C, o, a, b, c, a', b', c'. Suppose that $o \in A$ and $o \in P$ and $o \ne a$ and $o \ne b$ and $o \ne c$ and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' \in C$ and $a' a - We introduce A_1 satisfies **DES**₁ as a synonym of A_1 satisfies **DES**₁. Let us consider A_1 . We say that A_1 satisfies **DES**₂ if and only if the condition (Def. 6) is satisfied. - (Def. 6) Let given A, P, C, o, a, b, c, a', b', c'. Suppose that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $o \in A$ and $o \in A$ and $o \in C$ \in$ - We introduce A_1 satisfies **DES**₂ as a synonym of A_1 satisfies **DES**₂. - Let A_1 be an affine space. We say that A_1 is Moufangian if and only if the condition (Def. 7) is satisfied. - (Def. 7) Let K be a subset of A_1 and o, a, b, c, a', b', c' be elements of A_1 . Suppose K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and $a, b \parallel a'$, b' and $a, c \parallel a'$, c' and $a, b \parallel K$. Then $b, c \parallel b'$, c'. - We introduce A_1 satisfies **TDES** as a synonym of A_1 is Moufangian. - Let us consider A_1 . We say that A_1 satisfies **TDES**₁ if and only if the condition (Def. 8) is satisfied. - (Def. 8) Let given K, o, a, b, c, a', b', c'. Suppose K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \ne c$ and $a \ne b$ and $\mathbf{L}(o, a, a')$ and a, $b \parallel a'$, b' and b, $c \parallel b'$, c' and a, $c \parallel a'$, c' and a, $b \parallel K$. Then $\mathbf{L}(o, b, b')$. - We introduce A_1 satisfies **TDES**₁ as a synonym of A_1 satisfies **TDES**₁. - Let us consider A_1 . We say that A_1 satisfies **TDES**₂ if and only if the condition (Def. 9) is satisfied. - (Def. 9) Let given K, o, a, b, c, a', b', c'. Suppose K is a line and $o \in K$ and $c \in K$ and $c' \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and b, $c \parallel b'$, c' and a, $c \parallel a'$, c' and a, $b \parallel a'$, b'. - We introduce A_1 satisfies **TDES**₂ as a synonym of A_1 satisfies **TDES**₂. - Let us consider A_1 . We say that A_1 satisfies **TDES**₃ if and only if the condition (Def. 10) is satisfied - (Def. 10) Let given K, o, a, b, c, a', b', c'. Suppose K is a line and $o \in K$ and $c \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}(o, a, a')$ and $\mathbf{L}(o, b, b')$ and a, $b \upharpoonright a'$, b' and a, $c \upharpoonright a'$, c' and b, $c \upharpoonright b'$, c' and a, $b \upharpoonright K$. Then $c' \in K$. - We introduce A_1 satisfies **TDES**₃ as a synonym of A_1 satisfies **TDES**₃. - Let A_1 be an affine space. We say that A_1 is translational if and only if the condition (Def. 11) is satisfied. - (Def. 11) Let A, P, C be subsets of A_1 and a, b, c, a', b', c' be elements of A_1 . Suppose that $A /\!\!/ P$ and $A /\!\!/ C$ and $A \in A$ A - We introduce A_1 satisfies **des** as a synonym of A_1 is translational. - Let us consider A_1 . We say that A_1 satisfies des_1 if and only if the condition (Def. 12) is satisfied. - (Def. 12) Let given A, P, C, a, b, c, a', b', c'. Suppose that A // P and $a \in A$ and $a' \in A$ and $b \in P$ and $b' \in P$ and $c \in C$ and $c' c We introduce A_1 satisfies \mathbf{des}_1 as a synonym of A_1 satisfies \mathbf{des}_1 . Let A_1 be an affine space. We say that A_1 satisfies pap if and only if the condition (Def. 13) is satisfied. (Def. 13) Let M, N be subsets of A_1 and a, b, c, a', b', c' be elements of A_1 . Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $b' \in N$ \in$ We introduce A_1 satisfies **pap** as a synonym of A_1 satisfies pap. Let us consider A_1 . We say that A_1 satisfies \mathbf{pap}_1 if and only if the condition (Def. 14) is satisfied. (Def. 14) Let given M, N, a, b, c, a', b', c'. Suppose that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \not \mid N$ and $M \neq N$ and $a' \in N$ and $b' \in N$ and $a, b' \upharpoonright b, a'$ and $b, c' \upharpoonright c, b'$ and $a, c' \upharpoonright c, a'$ and $a' \neq b'$. Then $c' \in N$. We introduce A_1 satisfies pap_1 as a synonym of A_1 satisfies pap_1 . The following propositions are true: - $(15)^1$ A_1 satisfies **PAP** iff A_1 satisfies **PAP**₁. - (16) A_1 satisfies **DES** iff A_1 satisfies **DES**₁. - (17) If A_1 satisfies **TDES**, then A_1 satisfies **TDES**₁. - (18) If A_1 satisfies **TDES**₁, then A_1 satisfies **TDES**₂. - (19) If A_1 satisfies **TDES**₂, then A_1 satisfies **TDES**₃. - (20) If A_1 satisfies **TDES**₃, then A_1 satisfies **TDES**. - (21) A_1 satisfies **des** iff A_1 satisfies **des**₁. - (22) A_1 satisfies **pap** iff A_1 satisfies **pap**₁. - (23) If A_1 satisfies **PAP**, then A_1 satisfies **pap**. - (24) A_1 satisfies **PPAP** iff A_1 satisfies **PAP** and A_1 satisfies **pap**. - (25) If A_1 satisfies **PAP**, then A_1 satisfies **DES**. - (26) If A_1 satisfies **DES**, then A_1 satisfies **TDES**. - (27) If A_1 satisfies **TDES**₁, then A_1 satisfies **des**₁. - (28) If A_1 satisfies **TDES**, then A_1 satisfies **des**. - (29) If A_1 satisfies **des**, then A_1 satisfies **pap**. ## REFERENCES - [1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/analoaf.html. - [2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity part I. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/diraf.html. ¹ The propositions (1)–(14) have been removed. [3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/aff_1.html. Received April 13, 1990 Published January 2, 2004 ____