Some Properties of Functions Modul and Signum

Jan Popiołek Warsaw University Białystok

Summary. The article includes definitions and theorems concerning basic properties of the following functions: |x| – modul of real number, $\operatorname{sgn} x$ – signum of real number.

MML Identifier: ABSVALUE.

WWW: http://mizar.org/JFM/Vol1/absvalue.html

The articles [1] and [2] provide the notation and terminology for this paper.

In this paper x, y, z, t are real numbers.

Let us consider x. The functor |x| yielding a real number is defined by:

(Def. 1)
$$|x| = \begin{cases} x, & \text{if } 0 \le x, \\ -x, & \text{otherwise.} \end{cases}$$

Let us notice that the functor |x| is projective.

Let x be a real number. Then |x| is a real number.

We now state a number of propositions:

$$(5)^1 \quad 0 \le |x|.$$

(6) If
$$x \neq 0$$
, then $0 < |x|$.

(7)
$$x = 0$$
 iff $|x| = 0$.

$$(9)^2$$
 If $|x| = -x$ and $x \ne 0$, then $x < 0$.

$$(10) \quad |x \cdot y| = |x| \cdot |y|.$$

$$(11) \quad -|x| \le x \text{ and } x \le |x|.$$

(12)
$$-y \le x$$
 and $x \le y$ iff $|x| \le y$.

$$(13) |x+y| \le |x| + |y|.$$

(14) If
$$x \neq 0$$
, then $|x| \cdot |\frac{1}{x}| = 1$.

(15)
$$\left| \frac{1}{x} \right| = \frac{1}{|x|}$$
.

(16)
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$
.

¹ The propositions (1)–(4) have been removed.

² The proposition (8) has been removed.

(17)
$$|x| = |-x|$$
.

(18)
$$|x| - |y| \le |x - y|$$
.

$$(19) |x-y| \le |x| + |y|.$$

$$(21)^3$$
 If $|x| \le z$ and $|y| \le t$, then $|x+y| \le z+t$.

$$(22) ||x| - |y|| \le |x - y|.$$

$$(24)^4$$
 If $0 \le x \cdot y$, then $|x+y| = |x| + |y|$.

(25) If
$$|x + y| = |x| + |y|$$
, then $0 \le x \cdot y$.

(26)
$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

Let us consider x. The functor sgn x is defined by:

(Def. 2)
$$\operatorname{sgn} x = \begin{cases} 1, & \text{if } 0 < x, \\ -1, & \text{if } x < 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let us consider x. One can check that sgn x is real. Let x be a real number. Then sgn x is a real number. We now state a number of propositions:

$$(31)^5$$
 If $sgn x = 1$, then $0 < x$.

(32) If
$$sgn x = -1$$
, then $x < 0$.

(33) If
$$sgn x = 0$$
, then $x = 0$.

(34)
$$x = |x| \cdot \operatorname{sgn} x$$
.

(35)
$$\operatorname{sgn}(x \cdot y) = \operatorname{sgn} x \cdot \operatorname{sgn} y$$
.

(36)
$$\operatorname{sgn}\operatorname{sgn} x = \operatorname{sgn} x$$
.

(37)
$$\operatorname{sgn}(x+y) \leq \operatorname{sgn} x + \operatorname{sgn} y + 1$$
.

(38) If
$$x \neq 0$$
, then $\operatorname{sgn} x \cdot \operatorname{sgn}(\frac{1}{x}) = 1$.

$$(39) \quad \frac{1}{\operatorname{sgn} x} = \operatorname{sgn}(\frac{1}{x}).$$

$$(40) \quad (\operatorname{sgn} x + \operatorname{sgn} y) - 1 \le \operatorname{sgn}(x + y).$$

(41)
$$\operatorname{sgn} x = \operatorname{sgn}(\frac{1}{r}).$$

(42)
$$\operatorname{sgn}(\frac{x}{y}) = \frac{\operatorname{sgn}x}{\operatorname{sgn}y}$$
.

³ The proposition (20) has been removed.

⁴ The proposition (23) has been removed.

⁵ The propositions (27)–(30) have been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.

Received June 21, 1989

Published January 2, 2004