On Semilattice Structure of Mizar Types

Grzegorz Bancerek Białystok Technical University

Summary. The aim of this paper is to develop a formal theory of Mizar types. The presented theory is an approach to the structure of Mizar types as a sup-semilattice with widening (subtyping) relation as the order. It is an abstraction from the existing implementation of the Mizar verifier and formalization of the ideas from [9].

MML Identifier: ABCMIZ_0.

WWW: http://mizar.org/JFM/Vol15/abcmiz_0.html

The articles [18], [13], [22], [24], [21], [23], [3], [19], [1], [11], [12], [16], [10], [14], [15], [4], [2], [20], [5], [6], [7], [8], and [17] provide the notation and terminology for this paper.

1. SEMILATTICE OF WIDENING

Let us note that every non empty relational structure which is trivial and reflexive is also complete.

Let T be a relational structure. A type of T is an element of T.

Let *T* be a relational structure. We say that *T* is Noetherian if and only if:

(Def. 1) The internal relation of *T* is reversely well founded.

Let us observe that every non empty relational structure which is trivial is also Noetherian. Let *T* be a non empty relational structure. Let us observe that *T* is Noetherian if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let *A* be a non empty subset of *T*. Then there exists an element *a* of *T* such that $a \in A$ and for every element *b* of *T* such that $b \in A$ holds $a \nleq b$.

Let *T* be a poset. We say that *T* is Mizar-widening-like if and only if:

(Def. 3) *T* is a sup-semilattice and Noetherian.

One can verify that every poset which is Mizar-widening-like is also Noetherian and upper-bounded and has l.u.b.'s.

One can verify that every sup-semilattice which is Noetherian is also Mizar-widening-like.

One can verify that there exists a complete sup-semilattice which is Mizar-widening-like.

Let T be a Noetherian relational structure. One can check that the internal relation of T is reversely well founded.

The following proposition is true

(1) For every Noetherian sup-semilattice T and for every ideal I of T holds sup I exists in T and sup $I \in I$.

ADJECTIVES

We introduce adjective structures which are systems

⟨ a set of adjectives, an operation non ⟩,

where the set of adjectives is a set and the operation non is a unary operation on the set of adjectives. Let *A* be an adjective structure. We say that *A* is void if and only if:

(Def. 4) The set of adjectives of A is empty.

An adjective of A is an element of the set of adjectives of A.

Next we state the proposition

(2) Let A_1 , A_2 be adjective structures. Suppose the set of adjectives of A_1 = the set of adjectives of A_2 . If A_1 is void, then A_2 is void.

Let A be an adjective structure and let a be an element of the set of adjectives of A. The functor non a yielding an adjective of A is defined as follows:

(Def. 5) $\operatorname{non} a = (\text{the operation non of } A)(a).$

The following proposition is true

(3) Let A_1 , A_2 be adjective structures. Suppose the adjective structure of A_1 = the adjective structure of A_2 . Let a_1 be an adjective of A_1 and a_2 be an adjective of A_2 . If $a_1 = a_2$, then non $a_1 = \text{non } a_2$.

Let A be an adjective structure. We say that A is involutive if and only if:

(Def. 6) For every adjective a of A holds nonnon a = a.

We say that A is without fixpoints if and only if:

(Def. 7) It is not true that there exists an adjective a of A such that non a = a.

One can prove the following propositions:

- (4) Let a_1 , a_2 be sets. Suppose $a_1 \neq a_2$. Let A be an adjective structure. Suppose the set of adjectives of $A = \{a_1, a_2\}$ and (the operation non of A) $(a_1) = a_2$ and (the operation non of A) $(a_2) = a_1$. Then A is non void, involutive, and without fixpoints.
- (5) Let A_1 , A_2 be adjective structures. Suppose the adjective structure of A_1 = the adjective structure of A_2 . If A_1 is involutive, then A_2 is involutive.
- (6) Let A_1 , A_2 be adjective structures. Suppose the adjective structure of A_1 = the adjective structure of A_2 . If A_1 is without fixpoints, then A_2 is without fixpoints.

Let us note that there exists a strict adjective structure which is non void, involutive, and without fixpoints.

Let A be a non void adjective structure. Note that the set of adjectives of A is non empty.

We introduce TA-structures which are extensions of relational structure and adjective structure and are systems

 \langle a carrier, a set of adjectives, an internal relation, an operation non, an adjective map \rangle , where the carrier and the set of adjectives are sets, the internal relation is a binary relation on the carrier, the operation non is a unary operation on the set of adjectives, and the adjective map is a function from the carrier into Finthe set of adjectives.

Let X be a non empty set, let A be a set, let r be a binary relation on X, let n be a unary operation on A, and let a be a function from X into Fin A. Observe that $\langle X, A, r, n, a \rangle$ is non empty.

Let X be a set, let A be a non empty set, let r be a binary relation on X, let n be a unary operation on A, and let a be a function from X into FinA. One can check that $\langle X, A, r, n, a \rangle$ is non void.

One can check that there exists a *TA*-structure which is trivial, reflexive, non empty, non void, involutive, without fixpoints, and strict.

Let T be a TA-structure and let t be an element of T. The functor adjs t yielding a subset of the set of adjectives of T is defined by:

(Def. 8) adjs t = (the adjective map of T)(t).

The following proposition is true

(7) Let T_1 , T_2 be TA-structures. Suppose the TA-structure of T_1 = the TA-structure of T_2 . Let t_1 be a type of T_1 and t_2 be a type of T_2 . If $t_1 = t_2$, then $adjs t_1 = adjs t_2$.

Let T be a TA-structure. We say that T is consistent if and only if:

- (Def. 9) For every type t of T and for every adjective a of T such that $a \in \text{adjs } t$ holds non $a \notin \text{adjs } t$. We now state the proposition
 - (8) Let T_1 , T_2 be TA-structures. Suppose the TA-structure of T_1 = the TA-structure of T_2 . If T_1 is consistent, then T_2 is consistent.

Let T be a non empty TA-structure. We say that T has structured adjectives if and only if:

(Def. 10) The adjective map of T is a join-preserving map from T into $(2^{\text{the set of adjectives of }T})^{\text{op}}$.

Next we state the proposition

(9) Let T_1 , T_2 be non empty TA-structures. Suppose the TA-structure of T_1 = the TA-structure of T_2 . If T_1 has structured adjectives, then T_2 has structured adjectives.

Let *T* be a reflexive transitive antisymmetric *TA*-structure with l.u.b.'s. Let us observe that *T* has structured adjectives if and only if:

(Def. 11) For all types t_1 , t_2 of T holds $adjs(t_1 \sqcup t_2) = adjs t_1 \cap adjs t_2$.

The following proposition is true

(10) Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.'s. Suppose T has structured adjectives. Let t_1 , t_2 be types of T. If $t_1 \le t_2$, then $adjs t_2 \subseteq adjs t_1$.

Let *T* be a *TA*-structure and let *a* be an element of the set of adjectives of *T*. The functor types *a* yielding a subset of *T* is defined as follows:

(Def. 12) For every set x holds $x \in \text{types } a \text{ iff there exists a type } t \text{ of } T \text{ such that } x = t \text{ and } a \in \text{adjs } t.$

Let T be a non empty TA-structure and let A be a subset of the set of adjectives of T. The functor types A yields a subset of T and is defined as follows:

(Def. 13) For every type t of T holds $t \in \text{types } A$ iff for every adjective a of T such that $a \in A$ holds $t \in \text{types } a$.

The following propositions are true:

- (11) Let T_1 , T_2 be TA-structures. Suppose the TA-structure of T_1 = the TA-structure of T_2 . Let a_1 be an adjective of T_1 and a_2 be an adjective of T_2 . If $a_1 = a_2$, then types $a_1 = \text{types } a_2$.
- (12) For every non empty TA-structure T and for every adjective a of T holds types $a = \{t; t \text{ ranges over types of } T: a \in \text{adjs } t\}$.
- (13) Let T be a TA-structure, t be a type of T, and a be an adjective of T. Then $a \in \operatorname{adjs} t$ if and only if $t \in \operatorname{types} a$.
- (14) Let *T* be a non empty *TA*-structure, *t* be a type of *T*, and *A* be a subset of the set of adjectives of *T*. Then $A \subseteq \text{adjs } t$ if and only if $t \in \text{types } A$.
- (15) For every non void TA-structure T and for every type t of T holds adjs $t = \{a; a \text{ ranges over adjectives of } T: t \in \text{types } a\}$.

(16) Let T be a non empty TA-structure and t be a type of T. Then types $(\emptyset_{\text{the set of adjectives of } T)$ = the carrier of T.

Let T be a TA-structure. We say that T has typed adjectives if and only if:

(Def. 14) For every adjective a of T holds types $a \cup \text{types non } a$ is non empty.

The following proposition is true

(17) Let T_1 , T_2 be TA-structures. Suppose the TA-structure of T_1 = the TA-structure of T_2 . If T_1 has typed adjectives, then T_2 has typed adjectives.

One can verify that there exists a complete upper-bounded non empty trivial reflexive transitive antisymmetric strict *TA*-structure which is non void, Mizar-widening-like, involutive, without fixpoints, and consistent and has structured adjectives and typed adjectives.

The following proposition is true

(18) For every consistent TA-structure T and for every adjective a of T holds types a misses types non a.

Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives and let a be an adjective of T. Observe that types a is lower and directed.

Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives and let A be a subset of the set of adjectives of T. Note that types A is lower and directed.

One can prove the following proposition

(19) Let T be reflexive antisymmetric transitive TA-structure with l.u.b.'s with structured adjectives and a be an adjective of T. Then types a is empty or types a is an ideal of T.

3. APPLICABILITY OF ADJECTIVES

Let T be a TA-structure, let t be an element of T, and let a be an adjective of T. We say that a is applicable to t if and only if:

(Def. 15) There exists a type t' of T such that $t' \in \text{types } a$ and $t' \leq t$.

Let T be a TA-structure, let t be a type of T, and let A be a subset of the set of adjectives of T. We say that A is applicable to t if and only if:

(Def. 16) There exists a type t' of T such that $A \subseteq \text{adjs } t'$ and $t' \le t$.

Next we state the proposition

(20) Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, a be an adjective of T, and t be a type of T. If a is applicable to t, then types $a \cap \downarrow t$ is an ideal of T.

Let T be a non empty reflexive transitive TA-structure, let t be an element of T, and let a be an adjective of T. The functor a * t yields a type of T and is defined by:

(Def. 17) $a * t = \sup(\operatorname{types} a \cap \downarrow t)$.

The following propositions are true:

- (21) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and a be an adjective of T. If a is applicable to t, then a*t < t.
- (22) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and a be an adjective of T. If a is applicable to t, then $a \in \operatorname{adjs}(a * t)$.

- (23) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and a be an adjective of T. If a is applicable to t, then $a*t \in \text{types } a$.
- (24) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, a be an adjective of a, and a' be a type of a. If $a' \le t$ and $a' \in adject'$, then a' is applicable to a' and $a' \in adject'$.
- (25) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and a be an adjective of T. If $a \in adjst$, then a is applicable to t and a*t = t.
- (26) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and a, b be adjectives of T. Suppose a is applicable to t and t is applicable to t in t i
- (27) Let T be a reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, A be a subset of the set of adjectives of T, and t be a type of T. If A is applicable to t, then types $A \cap \downarrow t$ is an ideal of T.

Let T be a non empty reflexive transitive TA-structure, let t be a type of T, and let A be a subset of the set of adjectives of T. The functor A * t yielding a type of T is defined as follows:

(Def. 18) $A * t = \sup(\operatorname{types} A \cap \downarrow t)$.

One can prove the following proposition

(28) Let T be a non empty reflexive transitive antisymmetric TA-structure and t be a type of T. Then $\emptyset_{\text{the set of adjectives of } T * t = t$.

Let T be a non empty non void reflexive transitive TA-structure, let t be a type of T, and let p be a finite sequence of elements of the set of adjectives of T. The functor apply(p,t) yields a finite sequence of elements of the carrier of T and is defined by the conditions (Def. 19).

- (Def. 19)(i) $\operatorname{len apply}(p,t) = \operatorname{len} p + 1$,
 - (ii) (apply(p,t))(1) = t, and
 - (iii) for every natural number i and for every adjective a of T and for every type t of T such that $i \in \text{dom } p$ and a = p(i) and t = (apply(p,t))(i) holds (apply(p,t))(i+1) = a * t.

Let T be a non empty non void reflexive transitive TA-structure, let t be a type of T, and let p be a finite sequence of elements of the set of adjectives of T. Observe that apply(p,t) is non empty. The following two propositions are true:

- (29) Let T be a non empty non void reflexive transitive TA-structure and t be a type of T. Then apply $(\varepsilon_{\text{(the set of adjectives of }T)},t)=\langle t\rangle$.
- (30) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, and a be an adjective of T. Then apply $(\langle a \rangle, t) = \langle t, a * t \rangle$.

Let T be a non empty non void reflexive transitive TA-structure, let t be a type of T, and let v be a finite sequence of elements of the set of adjectives of T. The functor v * t yields a type of T and is defined by:

(Def. 20) v * t = (apply(v,t))(len v + 1).

Next we state several propositions:

(31) Let T be a non empty non void reflexive transitive TA-structure and t be a type of T. Then $\varepsilon_{\text{(the set of adjectives of }T)}*t=t$.

- (32) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, and a be an adjective of T. Then $\langle a \rangle *t = a *t$.
- (33) For all finite sequences p, q and for every natural number i such that $i \ge 1$ and i < len p holds $(p^{^{n}}q)(i) = p(i)$.
- (34) Let p be a non empty finite sequence, q be a finite sequence, and i be a natural number. If i < len q, then $(p^{n} q)(\text{len } p + i) = q(i + 1)$.
- (35) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. Then apply $(v_1 \cap v_2, t) = (\operatorname{apply}(v_1, t))^{\$} \cap \operatorname{apply}(v_2, v_1 * t)$.
- (36) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, v_1 , v_2 be finite sequences of elements of the set of adjectives of T, and i be a natural number. If $i \in \text{dom } v_1$, then $(\text{apply}(v_1 \cap v_2, t))(i) = (\text{apply}(v_1, t))(i)$.
- (37) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, and v_1, v_2 be finite sequences of elements of the set of adjectives of T. Then $(\operatorname{apply}(v_1 \cap v_2, t))(\operatorname{len} v_1 + 1) = v_1 * t$.
- (38) Let *T* be a non empty non void reflexive transitive *TA*-structure, *t* be a type of *T*, and v_1, v_2 be finite sequences of elements of the set of adjectives of *T*. Then $v_2 * (v_1 * t) = (v_1 ^ v_2) * t$.

Let T be a non empty non void reflexive transitive TA-structure, let t be a type of T, and let v be a finite sequence of elements of the set of adjectives of T. We say that v is applicable to t if and only if the condition (Def. 21) is satisfied.

(Def. 21) Let i be a natural number, a be an adjective of T, and s be a type of T. If $i \in \text{dom } v$ and a = v(i) and s = (apply(v,t))(i), then a is applicable to s.

One can prove the following propositions:

- (39) Let T be a non empty non void reflexive transitive TA-structure and t be a type of T. Then $\varepsilon_{\text{(the set of adjectives of }T)}$ is applicable to t.
- (40) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, and a be an adjective of T. Then a is applicable to t if and only if $\langle a \rangle$ is applicable to t.
- (41) Let T be a non empty non void reflexive transitive TA-structure, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. Suppose $v_1 \cap v_2$ is applicable to t. Then v_1 is applicable to t and v_2 is applicable to $v_1 * t$.
- (42) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. Suppose v is applicable to t. Let i_1 , i_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 \le i_2$ and $i_2 \le \text{len } v + 1$. Let t_1 , t_2 be types of T. If $t_1 = (\text{apply}(v,t))(i_1)$ and $t_2 = (\text{apply}(v,t))(i_2)$, then $t_2 \le t_1$.
- (43) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. Suppose v is applicable to t. Let s be a type of T. If $s \in \text{rng apply}(v,t)$, then $v*t \leq s$ and $s \leq t$.
- (44) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. If v is applicable to t, then $v * t \le t$.
- (45) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. If v is applicable to t, then $\operatorname{rng} v \subseteq \operatorname{adjs}(v * t)$.

- (46) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. Suppose v is applicable to t. Let A be a subset of the set of adjectives of T. If $A = \operatorname{rng} v$, then A is applicable to t.
- (47) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. Suppose v_1 is applicable to t and $\operatorname{rng} v_2 \subseteq \operatorname{rng} v_1$. Let s be a type of T. If $s \in \operatorname{rng apply}(v_2, t)$, then $v_1 * t \le s$.
- (48) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. If $v_1 \cap v_2$ is applicable to t, then $v_2 \cap v_1$ is applicable to t.
- (49) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. If $v_1 \cap v_2$ is applicable to t, then $(v_1 \cap v_2) * t = (v_2 \cap v_1) * t$.
- (50) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a subset of the set of adjectives of T. If A is applicable to t, then $A * t \le t$.
- (51) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a subset of the set of adjectives of T. If A is applicable to t, then $A \subseteq \operatorname{adjs}(A * t)$.
- (52) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a subset of the set of adjectives of T. If A is applicable to t, then $A * t \in \text{types } A$.
- (53) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, A be a subset of the set of adjectives of T, and t' be a type of T. If $t' \le t$ and $A \subseteq \operatorname{adjs} t'$, then A is applicable to t and $t' \le A * t$.
- (54) Let T be a Noetherian reflexive transitive antisymmetric TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a subset of the set of adjectives of T. If $A \subseteq \operatorname{adjs} t$, then A is applicable to t and A * t = t.
- (55) Let T be a TA-structure, t be a type of T, and A, B be subsets of the set of adjectives of T. If A is applicable to t and $B \subseteq A$, then B is applicable to t.
- (56) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, a be an adjective of T, and a, b be subsets of the set of adjectives of b. If b is applicable to b, then a * (A * t) = B * t.
- (57) Let T be a Noetherian reflexive transitive antisymmetric non void TA-structure with l.u.b.'s with structured adjectives, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. Suppose v is applicable to t. Let A be a subset of the set of adjectives of T. If $A = \operatorname{rng} v$, then v * t = A * t.

4. Subject Function

Let T be a non empty non void TA-structure. The functor sub T yielding a function from the set of adjectives of T into the carrier of T is defined by:

(Def. 22) For every adjective a of T holds $(\operatorname{sub} T)(a) = \sup(\operatorname{types} a \cup \operatorname{types} \operatorname{non} a)$.

We consider TAS-structures as extensions of TA-structure as systems

 \langle a carrier, a set of adjectives, an internal relation, an operation non, an adjective map, a subject map \rangle ,

where the carrier and the set of adjectives are sets, the internal relation is a binary relation on the carrier, the operation non is a unary operation on the set of adjectives, the adjective map is a function from the carrier into Finthe set of adjectives, and the subject map is a function from the set of adjectives into the carrier.

One can verify that there exists a TAS-structure which is non void, reflexive, trivial, non empty, and strict.

Let T be a non empty non void TAS-structure and let a be an adjective of T. The functor sub a yielding a type of T is defined as follows:

(Def. 23) $\operatorname{sub} a = (\text{the subject map of } T)(a).$

Let T be a non empty non void TAS-structure. We say that T is absorbing non if and only if:

(Def. 24) (The subject map of T) (the operation non of T) = the subject map of T.

We say that T is subjected if and only if:

(Def. 25) For every adjective a of T holds $\operatorname{types} a \cup \operatorname{types} \operatorname{non} a \leq \operatorname{sub} a$ and if $\operatorname{types} a \neq \emptyset$ and $\operatorname{types} \operatorname{non} a \neq \emptyset$, then $\operatorname{sub} a = \sup(\operatorname{types} a \cup \operatorname{types} \operatorname{non} a)$.

Let *T* be a non empty non void *TAS*-structure. Let us observe that *T* is absorbing non if and only if:

(Def. 26) For every adjective a of T holds sub non $a = \sup a$.

Let T be a non empty non void TAS-structure, let t be an element of T, and let a be an adjective of T. We say that a is properly applicable to t if and only if:

(Def. 27) $t \le \sup a$ and a is applicable to t.

Let T be a non empty non void reflexive transitive TAS-structure, let t be a type of T, and let v be a finite sequence of elements of the set of adjectives of T. We say that v is properly applicable to t if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let i be a natural number, a be an adjective of T, and s be a type of T. If $i \in \text{dom } v$ and a = v(i) and s = (apply(v,t))(i), then a is properly applicable to s.

The following propositions are true:

- (58) Let T be a non empty non void reflexive transitive TAS-structure, t be a type of T, and v be a finite sequence of elements of the set of adjectives of T. If v is properly applicable to t, then v is applicable to t.
- (59) Let T be a non empty non void reflexive transitive TAS-structure and t be a type of T. Then $\varepsilon_{\text{(the set of adjectives of }T)}$ is properly applicable to t.
- (60) Let T be a non empty non void reflexive transitive TAS-structure, t be a type of T, and a be an adjective of T. Then a is properly applicable to t if and only if $\langle a \rangle$ is properly applicable to t.
- (61) Let T be a non empty non void reflexive transitive TAS-structure, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. Suppose $v_1 \cap v_2$ is properly applicable to t. Then v_1 is properly applicable to t and v_2 is properly applicable to $v_1 * t$.
- (62) Let T be a non empty non void reflexive transitive TAS-structure, t be a type of T, and v_1 , v_2 be finite sequences of elements of the set of adjectives of T. Suppose v_1 is properly applicable to t and v_2 is properly applicable to $v_1 * t$. Then $v_1 \cap v_2$ is properly applicable to t.

Let T be a non empty non void reflexive transitive TAS-structure, let t be a type of T, and let A be a subset of the set of adjectives of T. We say that A is properly applicable to t if and only if the condition (Def. 29) is satisfied.

(Def. 29) There exists a finite sequence s of elements of the set of adjectives of T such that $\operatorname{rng} s = A$ and s is properly applicable to t.

We now state two propositions:

- (63) Let T be a non empty non void reflexive transitive TAS-structure, t be a type of T, and A be a subset of the set of adjectives of T. If A is properly applicable to t, then A is finite.
- (64) Let T be a non empty non void reflexive transitive TAS-structure and t be a type of T. Then $\emptyset_{\text{the set of adjectives of } T}$ is properly applicable to t.

The scheme MinimalFiniteSet concerns a unary predicate \mathcal{P} , and states that:

There exists a finite set A such that $\mathcal{P}[A]$ and for every set B such that $B \subseteq A$ and $\mathcal{P}[B]$ holds B = A

provided the following condition is met:

• There exists a finite set A such that $\mathcal{P}[A]$.

Next we state the proposition

- (65) Let *T* be a non empty non void reflexive transitive *TAS*-structure, *t* be a type of *T*, and *A* be a subset of the set of adjectives of *T*. Suppose *A* is properly applicable to *t*. Then there exists a subset *B* of the set of adjectives of *T* such that
 - (i) $B \subseteq A$,
- (ii) B is properly applicable to t,
- (iii) A * t = B * t, and
- (iv) for every subset *C* of the set of adjectives of *T* such that $C \subseteq B$ and *C* is properly applicable to *t* and A * t = C * t holds C = B.

Let T be a non empty non void reflexive transitive TAS-structure. We say that T is commutative if and only if the condition (Def. 30) is satisfied.

(Def. 30) Let t_1 , t_2 be types of T and a be an adjective of T. Suppose a is properly applicable to t_1 and $a * t_1 \le t_2$. Then there exists a finite subset A of the set of adjectives of T such that A is properly applicable to $t_1 \sqcup t_2$ and $A * (t_1 \sqcup t_2) = t_2$.

Let us observe that there exists a complete upper-bounded non empty non void trivial reflexive transitive antisymmetric strict *TAS*-structure which is Mizar-widening-like, involutive, without fixpoints, consistent, absorbing non, subjected, and commutative and has structured adjectives and typed adjectives.

One can prove the following proposition

(66) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a subset of the set of adjectives of T. Suppose A is properly applicable to t. Then there exists an one-to-one finite sequence s of elements of the set of adjectives of T such that rng s = A and s is properly applicable to t.

5. REDUCTION OF ADJECTIVES

Let *T* be a non empty non void reflexive transitive *TAS*-structure. The functor \hookrightarrow_T yields a binary relation on *T* and is defined by the condition (Def. 31).

(Def. 31) Let t_1, t_2 be types of T. Then $\langle t_1, t_2 \rangle \in \hookrightarrow_T$ if and only if there exists an adjective a of T such that $a \notin \operatorname{adjs} t_2$ and a is properly applicable to t_2 and $a * t_2 = t_1$.

Next we state the proposition

(67) Let T be an antisymmetric non void reflexive transitive Noetherian TAS-structure with l.u.b.'s with structured adjectives. Then $\circ \to_T \subseteq$ the internal relation of T.

The scheme *RedInd* deals with a non empty set \mathcal{A} , a binary relation \mathcal{B} on \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

For all elements x, y of \mathcal{A} such that \mathcal{B} reduces x to y holds $\mathcal{P}[x,y]$ provided the parameters have the following properties:

- For all elements x, y of \mathcal{A} such that $\langle x, y \rangle \in \mathcal{B}$ holds $\mathcal{P}[x, y]$,
- For every element x of \mathcal{A} holds $\mathcal{P}[x,x]$, and
- For all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x,y]$ and $\mathcal{P}[y,z]$ holds $\mathcal{P}[x,z]$.

One can prove the following propositions:

- (68) Let T be an antisymmetric non void reflexive transitive Noetherian TAS-structure with l.u.b.'s with structured adjectives and t_1 , t_2 be types of T. If $c \rightarrow_T$ reduces t_1 to t_2 , then $t_1 \leq t_2$.
- (69) Let *T* be a Noetherian reflexive transitive antisymmetric non void *TAS*-structure with l.u.b.'s with structured adjectives. Then $\circ \rightarrow_T$ is irreflexive.
- (70) Let T be an antisymmetric non void reflexive transitive Noetherian TAS-structure with l.u.b.'s with structured adjectives. Then $\circ \to_T$ is strongly-normalizing.
- (71) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a finite subset of the set of adjectives of T. Suppose that for every subset C of the set of adjectives of T such that $C \subseteq A$ and C is properly applicable to t and A*t = C*t holds C = A. Let s be an one-to-one finite sequence of elements of the set of adjectives of T. Suppose $\operatorname{rng} s = A$ and s is properly applicable to t. Let t be a natural number. If $t \le t$ and $t \le t$ hen t (apply t (apply
- (72) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a finite subset of the set of adjectives of T. Suppose that for every subset C of the set of adjectives of T such that $C \subseteq A$ and C is properly applicable to t and A * t = C * t holds C = A. Let s be an one-to-one finite sequence of elements of the set of adjectives of T. Suppose $\operatorname{rng} s = A$ and s is properly applicable to t. Then $\operatorname{Rev}(\operatorname{apply}(s,t))$ is a reduction sequence w.r.t. $\circ \to_T$.
- (73) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-structure with l.u.b.'s with structured adjectives, t be a type of T, and A be a finite subset of the set of adjectives of T. If A is properly applicable to t, then $c \rightarrow_T$ reduces A * t to t.
- (74) Let X be a non empty set, R be a binary relation on X, and r be a reduction sequence w.r.t. R. If $r(1) \in X$, then r is a finite sequence of elements of X.
- (75) Let X be a non empty set, R be a binary relation on X, x be an element of X, and y be a set. If R reduces x to y, then $y \in X$.
- (76) Let X be a non empty set and R be a binary relation on X. Suppose R is weakly-normalizing and has unique normal form property. Let x be an element of X. Then $nf_R(x) \in X$.
- (77) Let T be a Noetherian reflexive transitive antisymmetric non void TAS-structure with l.u.b.'s with structured adjectives and t_1 , t_2 be types of T. Suppose $0 \rightarrow_T T$ reduces t_1 to t_2 . Then there exists a finite subset A of the set of adjectives of T such that A is properly applicable to t_2 and $t_1 = A * t_2$.
- (78) Let T be an antisymmetric commutative non void reflexive transitive Noetherian TASstructure with l.u.b.'s with structured adjectives. Then $0 \rightarrow_T$ has Church-Rosser property and unique normal form property.

6. RADIX TYPES

Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian TASstructure with structured adjectives and l.u.b.'s and let t be a type of T. The functor radix t yielding a type of T is defined by:

(Def. 32) $\operatorname{radix} t = \operatorname{nf}_{0 \to T}(t)$.

The following propositions are true:

- (79) Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian *TAS*-structure with structured adjectives and l.u.b.'s and t be a type of T. Then $\circ \to_T$ reduces t to radix t.
- (80) Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure with structured adjectives and l.u.b.'s and t be a type of T. Then $t \le \text{radix } t$.
- (81) Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure with structured adjectives and l.u.b.'s, t be a type of T, and X be a set. Suppose $X = \{t'; t' \text{ ranges over types of } T : \bigvee_{A: \text{ finite subset of the set of adjectives of } T}$ (A is properly applicable to $t' \land A * t' = t$). Then sup X exists in T and radix $t = \bigsqcup_{T} X$.
- (82) Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure with structured adjectives and l.u.b.'s, t_1 , t_2 be types of T, and a be an adjective of T. If a is properly applicable to t_1 and $a * t_1 \le \operatorname{radix} t_2$, then $t_1 \le \operatorname{radix} t_2$.
- (83) Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure with structured adjectives and l.u.b.'s and t_1 , t_2 be types of T. If $t_1 \le t_2$, then $radix t_1 \le radix t_2$.
- (84) Let T be an antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure with structured adjectives and l.u.b.'s, t be a type of T, and a be an adjective of T. If a is properly applicable to t, then radix(a*t) = radix t.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [4] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [5] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [6] Grzegorz Bancerek. Reduction relations. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/rewritel. html.
- [7] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [8] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [9] Grzegorz Bancerek. On the structure of Mizar types. In Herman Geuvers and Fairouz Kamareddine, editors, Electronic Notes in Theoretical Computer Science, volume 85. Elsevier, 2003.
- [10] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [11] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [12] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [13] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [14] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [15] Czesław Byliński. Some properties of restrictions of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vo17/finseq_5.html.

- [16] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [17] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [20] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [23] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset 1.html.
- [24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received August 8, 2003

Published January 2, 2004