environ vocabulary SETFAM_1, FUNCT_1, ARYTM, MATRIX_2, INT_1, ARYTM_1, FUNCT_4, TRIANG_1, ZF_REFLE, FUNCOP_1, RELAT_1, SQUARE_1, BOOLE, KNASTER, TARSKI, FINSET_1, EQREL_1, MCART_1, NAT_1, ABIAN; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, MCART_1, DOMAIN_1, FINSET_1, SETFAM_1, CQC_SIM1, RELAT_1, FUNCT_1, FUNCT_2, FUNCOP_1, INT_1, NAT_1, EQREL_1, TRIANG_1, FUNCT_7, KNASTER; constructors DOMAIN_1, CQC_SIM1, REAL_1, TRIANG_1, AMI_1, KNASTER, INT_1, FUNCT_7, MEMBERED; clusters SUBSET_1, INT_1, FINSET_1, RELSET_1, PRALG_3, PUA2MSS1, TRIANG_1, MEMBERED, PARTFUN1, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve x, y, z, E, E1, E2, E3 for set, sE for Subset-Family of E, f for Function of E, E, k, l, m, n for Nat; definition let i be number; attr i is even means :: ABIAN:def 1 ex j being Integer st i = 2*j; antonym i is odd; end; definition let n be Nat; redefine attr n is even means :: ABIAN:def 2 ex k st n = 2*k; antonym n is odd; end; definition cluster even Nat; cluster odd Nat; cluster even Integer; cluster odd Integer; end; theorem :: ABIAN:1 for i being Integer holds i is odd iff ex j being Integer st i = 2*j+1; definition let i be Integer; cluster 2*i -> even; end; definition let i be even Integer; cluster i+1 -> odd; end; definition let i be odd Integer; cluster i+1 -> even; end; definition let i be even Integer; cluster i-1 -> odd; end; definition let i be odd Integer; cluster i-1 -> even; end; definition let i be even Integer, j be Integer; cluster i*j -> even; cluster j*i -> even; end; definition let i, j be odd Integer; cluster i*j -> odd; end; definition let i, j be even Integer; cluster i+j -> even; end; definition let i be even Integer, j be odd Integer; cluster i+j -> odd; cluster j+i -> odd; end; definition let i, j be odd Integer; cluster i+j -> even; end; definition let i be even Integer, j be odd Integer; cluster i-j -> odd; cluster j-i -> odd; end; definition let i, j be odd Integer; cluster i-j -> even; end; definition let E, f, n; redefine func iter(f, n) -> Function of E, E; end; definition let A be set, B be with_non-empty_element set; cluster non-empty Function of A, B; end; definition let A be non empty set, B be with_non-empty_element set, f be non-empty Function of A, B, a be Element of A; cluster f.a -> non empty; end; definition let X be non empty set; cluster bool X -> with_non-empty_element; end; theorem :: ABIAN:2 for S being non empty Subset of NAT st 0 in S holds min S = 0; theorem :: ABIAN:3 for E being non empty set, f being Function of E, E, x being Element of E holds iter(f,0).x = x; ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: definition let f be Function; pred f has_a_fixpoint means :: ABIAN:def 3 ex x st x is_a_fixpoint_of f; antonym f has_no_fixpoint; end; definition let X be set, x be Element of X; attr x is covering means :: ABIAN:def 4 union x = union union X; end; theorem :: ABIAN:4 sE is covering iff union sE = E; definition let E; cluster non empty finite covering Subset-Family of E; end; theorem :: ABIAN:5 for E being set, f being Function of E, E, sE being non empty covering Subset-Family of E st for X being Element of sE holds X misses f.:X holds f has_no_fixpoint; definition let E, f; func =_f -> Equivalence_Relation of E means :: ABIAN:def 5 for x, y st x in E & y in E holds [x,y] in it iff ex k, l st iter(f,k).x = iter(f,l).y; end; theorem :: ABIAN:6 for E being non empty set, f being Function of E, E, c being Element of Class =_f, e being Element of c holds f.e in c; theorem :: ABIAN:7 for E being non empty set, f being Function of E, E, c being Element of Class =_f, e being Element of c, n holds iter(f, n).e in c; theorem :: ABIAN:8 for E being non empty set, f being Function of E, E st f has_no_fixpoint ex E1, E2, E3 st E1 \/ E2 \/ E3 = E & f.:E1 misses E1 & f.:E2 misses E2 & f.:E3 misses E3;