Journal of Formalized Mathematics
Volume 8, 1996
University of Bialystok
Copyright (c) 1996
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Robert Milewski
- Received February 9, 1996
- MML identifier: MSUALG_7
- [
Mizar article,
MML identifier index
]
environ
vocabulary PBOOLE, MSUALG_5, EQREL_1, RELAT_1, FUNCT_1, MSUALG_4, PRALG_2,
LATTICES, BOOLE, CLOSURE2, MSUALG_2, SETFAM_1, FUNCT_4, CANTOR_1,
ZF_REFLE, BHSP_3, LATTICE3, MSSUBFAM, NAT_LAT, RCOMP_1, REAL_LAT,
SQUARE_1, BINOP_1, SUPINF_1, ORDINAL2, ARYTM_3, ARYTM_1, SEQ_2, MSUALG_7;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, XREAL_0, SUPINF_1, REAL_1,
SQUARE_1, STRUCT_0, RELSET_1, DOMAIN_1, FUNCT_1, PARTFUN1, FUNCT_2,
RCOMP_1, EQREL_1, BINOP_1, PBOOLE, LATTICES, LATTICE3, NAT_LAT, REAL_LAT,
PRALG_2, MSUALG_2, MSUALG_3, MSUALG_4, MSUALG_5, CANTOR_1, SETFAM_1,
MSSUBFAM, CLOSURE2;
constructors DOMAIN_1, SUPINF_1, SQUARE_1, REAL_1, BINOP_1, LATTICE3,
REAL_LAT, RCOMP_1, MSUALG_3, MSUALG_5, CANTOR_1, CLOSURE2, MEMBERED,
MSSUBFAM;
clusters SUBSET_1, STRUCT_0, LATTICE3, SUPINF_1, MSSUBFAM, CLOSURE2, LATTICES,
XREAL_0, RELSET_1, XBOOLE_0, MEMBERED;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: LATTICE OF MANY SORTED EQUIVALENCE RELATIONS IS COMPLETE ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
reserve I for non empty set;
reserve M for ManySortedSet of I;
reserve Y,x,y,i for set;
reserve r,r1,r2 for Real;
theorem :: MSUALG_7:1
for X be set holds
x in the carrier of EqRelLatt X iff x is Equivalence_Relation of X;
theorem :: MSUALG_7:2
id M is Equivalence_Relation of M;
theorem :: MSUALG_7:3
[|M,M|] is Equivalence_Relation of M;
definition let I,M;
cluster EqRelLatt M -> bounded;
end;
theorem :: MSUALG_7:4
Bottom EqRelLatt M = id M;
theorem :: MSUALG_7:5
Top EqRelLatt M = [|M,M|];
theorem :: MSUALG_7:6
for X be Subset of EqRelLatt M holds
X is SubsetFamily of [|M,M|];
theorem :: MSUALG_7:7
for a,b be Element of EqRelLatt M,
A,B be Equivalence_Relation of M st a = A & b = B holds
a [= b iff A c= B;
theorem :: MSUALG_7:8
for X be Subset of EqRelLatt M,
X1 be SubsetFamily of [|M,M|] st X1 = X
for a,b be Equivalence_Relation of M st a = meet |:X1:| & b in X holds
a c= b;
theorem :: MSUALG_7:9
for X be Subset of EqRelLatt M,
X1 be SubsetFamily of [|M,M|] st X1 = X & X is non empty holds
meet |:X1:| is Equivalence_Relation of M;
definition let L be non empty LattStr;
redefine attr L is complete means
:: MSUALG_7:def 1
for X being Subset of L
ex a being Element of L
st X is_less_than a &
for b being Element of L
st X is_less_than b holds a [= b;
end;
theorem :: MSUALG_7:10
EqRelLatt M is complete;
definition
let I,M;
cluster EqRelLatt M -> complete;
end;
theorem :: MSUALG_7:11
for X be Subset of EqRelLatt M,
X1 be SubsetFamily of [|M,M|] st X1 = X & X is non empty
for a,b be Equivalence_Relation of M st a = meet |:X1:| &
b = "/\" (X,EqRelLatt M) holds a = b;
begin
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: SUBLATTICES INHERITING SUP'S AND INF'S ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
definition
let L be Lattice;
let IT be SubLattice of L;
attr IT is /\-inheriting means
:: MSUALG_7:def 2
for X being Subset of IT holds
"/\" (X,L) in the carrier of IT;
attr IT is \/-inheriting means
:: MSUALG_7:def 3
for X being Subset of IT holds
"\/" (X,L) in the carrier of IT;
end;
theorem :: MSUALG_7:12
for L be Lattice,
L' be SubLattice of L,
a,b be Element of L,
a',b' be Element of L' st a = a' & b = b' holds
( a "\/" b = a' "\/" b' & a "/\" b = a' "/\" b' );
theorem :: MSUALG_7:13
for L be Lattice,
L' be SubLattice of L,
X be Subset of L',
a be Element of L,
a' be Element of L' st a = a' holds
a is_less_than X iff a' is_less_than X;
theorem :: MSUALG_7:14
for L be Lattice,
L' be SubLattice of L,
X be Subset of L',
a be Element of L,
a' be Element of L' st a = a' holds
X is_less_than a iff X is_less_than a';
theorem :: MSUALG_7:15
for L be complete Lattice,
L' be SubLattice of L st L' is /\-inheriting holds
L' is complete;
theorem :: MSUALG_7:16
for L be complete Lattice,
L' be SubLattice of L st L' is \/-inheriting holds
L' is complete;
definition
let L be complete Lattice;
cluster complete SubLattice of L;
end;
definition
let L be complete Lattice;
cluster /\-inheriting -> complete SubLattice of L;
cluster \/-inheriting -> complete SubLattice of L;
end;
theorem :: MSUALG_7:17
for L be complete Lattice,
L' be SubLattice of L st L' is /\-inheriting
for A' be Subset of L' holds
"/\" (A',L) = "/\" (A',L');
theorem :: MSUALG_7:18
for L be complete Lattice,
L' be SubLattice of L st L' is \/-inheriting
for A' be Subset of L' holds
"\/" (A',L) = "\/" (A',L');
theorem :: MSUALG_7:19
for L be complete Lattice,
L' be SubLattice of L st L' is /\-inheriting
for A be Subset of L,
A' be Subset of L' st A = A' holds
"/\" A = "/\" A';
theorem :: MSUALG_7:20
for L be complete Lattice,
L' be SubLattice of L st L' is \/-inheriting
for A be Subset of L,
A' be Subset of L' st A = A' holds
"\/" A = "\/" A';
begin
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: SEGMENT OF REAL NUMBERS AS A COMPLETE LATTICE ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
definition
let r1,r2 such that r1 <= r2;
func RealSubLatt(r1,r2) -> strict Lattice means
:: MSUALG_7:def 4
the carrier of it = [.r1,r2.] &
the L_join of it = maxreal|([:[.r1,r2.],[.r1,r2.]:] qua set) &
the L_meet of it = minreal|([:[.r1,r2.],[.r1,r2.]:] qua set);
end;
theorem :: MSUALG_7:21
for r1,r2 st r1 <= r2 holds
RealSubLatt(r1,r2) is complete;
theorem :: MSUALG_7:22
ex L' be SubLattice of RealSubLatt(0,1) st
L' is \/-inheriting non /\-inheriting;
theorem :: MSUALG_7:23
ex L be complete Lattice,
L' be SubLattice of L st
L' is \/-inheriting non /\-inheriting;
theorem :: MSUALG_7:24
ex L' be SubLattice of RealSubLatt(0,1) st
L' is /\-inheriting non \/-inheriting;
theorem :: MSUALG_7:25
ex L be complete Lattice,
L' be SubLattice of L st
L' is /\-inheriting non \/-inheriting;
Back to top