Journal of Formalized Mathematics
Volume 8, 1996
University of Bialystok
Copyright (c) 1996
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Adam Grabowski
- Received June 11, 1996
- MML identifier: MSINST_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary AMI_1, MSUALG_1, ALTCAT_1, MSALIMIT, FUNCT_1, CAT_1, PBOOLE,
MCART_1, PUA2MSS1, PRALG_1, BOOLE, RELAT_1, RELAT_2, BINOP_1, MSUALG_6,
TDGROUP, FUNCT_2, PARTFUN1, CARD_3, TARSKI, FUNCOP_1, ZF_REFLE, NATTRA_1,
QC_LANG1, MSUALG_3, FUNCT_6, FINSEQ_4, ALG_1, MSINST_1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, MCART_1, RELAT_1,
FUNCT_1, STRUCT_0, FUNCT_2, MCART_2, RELSET_1, PARTFUN1, FINSEQ_2,
CARD_3, BINOP_1, MULTOP_1, FUNCT_6, PBOOLE, PRALG_1, MSUALG_1, MSUALG_3,
EXTENS_1, ALTCAT_1, PRALG_2, AUTALG_1, PUA2MSS1, MSUALG_6, MSALIMIT;
constructors AUTALG_1, CLOSURE1, EXTENS_1, MCART_2, MSALIMIT, ALTCAT_1,
PUA2MSS1, MSUALG_6;
clusters ALTCAT_1, FUNCT_1, MSALIMIT, MSUALG_1, MSUALG_6, PRALG_1, RELSET_1,
STRUCT_0, SUBSET_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Category of Many Sorted Signatures
reserve A for non empty set,
S for non void non empty ManySortedSign;
reserve x for set;
definition let A;
func MSSCat A -> strict non empty AltCatStr means
:: MSINST_1:def 1
the carrier of it = MSS_set A &
( for i, j be Element of MSS_set A holds
(the Arrows of it).(i,j) = MSS_morph (i,j) ) &
for i,j,k be object of it st
i in MSS_set A & j in MSS_set A & k in MSS_set A
for f1,f2,g1,g2 be Function st
[f1,f2] in (the Arrows of it).(i,j) &
[g1,g2] in (the Arrows of it).(j,k) holds
(the Comp of it).(i,j,k).([g1,g2],[f1,f2]) = [g1*f1,g2*f2];
end;
definition let A;
cluster MSSCat A -> transitive associative with_units;
end;
theorem :: MSINST_1:1
for C be category st C = MSSCat A
for o be object of C holds o is non empty non void ManySortedSign;
definition let S;
cluster strict feasible MSAlgebra over S;
end;
definition let S, A;
func MSAlg_set (S,A) means
:: MSINST_1:def 2
x in it iff ex M be strict feasible MSAlgebra over S st x = M &
for C be Component of the Sorts of M holds C c= A;
end;
definition let S, A;
cluster MSAlg_set (S,A) -> non empty;
end;
begin :: Category of Many Sorted Algebras
reserve o for OperSymbol of S;
theorem :: MSINST_1:2
for x be MSAlgebra over S st x in MSAlg_set (S,A) holds
the Sorts of x in Funcs (the carrier of S, bool A) &
the Charact of x in Funcs (the OperSymbols of S,PFuncs(PFuncs (NAT ,A),A));
theorem :: MSINST_1:3
for U1,U2 be MSAlgebra over S
st the Sorts of U1 is_transformable_to the Sorts of U2 &
Args (o,U1) <> {} holds Args (o,U2) <> {};
theorem :: MSINST_1:4
for U1,U2,U3 be feasible MSAlgebra over S,
F be ManySortedFunction of U1,U2,
G be ManySortedFunction of U2,U3,
x be Element of Args(o,U1) st Args (o,U1) <> {} &
the Sorts of U1 is_transformable_to the Sorts of U2
& the Sorts of U2 is_transformable_to the Sorts of U3
ex GF be ManySortedFunction of U1,U3 st
GF = G ** F & GF#x = G#(F#x);
theorem :: MSINST_1:5
for U1,U2,U3 be feasible MSAlgebra over S,
F be ManySortedFunction of U1,U2,
G be ManySortedFunction of U2,U3 st
the Sorts of U1 is_transformable_to the Sorts of U2
& the Sorts of U2 is_transformable_to the Sorts of U3
& F is_homomorphism U1,U2 & G is_homomorphism U2,U3
ex GF be ManySortedFunction of U1,U3 st
GF = G ** F & GF is_homomorphism U1,U3;
definition let S, A; let i,j be set;
assume i in MSAlg_set (S,A) & j in MSAlg_set (S,A);
func MSAlg_morph (S,A,i,j) means
:: MSINST_1:def 3
x in it iff (ex M,N be strict feasible MSAlgebra over S,
f be ManySortedFunction of M,N
st M = i & N = j & f = x &
the Sorts of M is_transformable_to the Sorts of N & f is_homomorphism M,N);
end;
definition let S, A;
func MSAlgCat (S,A) -> strict non empty AltCatStr means
:: MSINST_1:def 4
the carrier of it = MSAlg_set (S,A) &
( for i, j be Element of MSAlg_set (S,A) holds
(the Arrows of it).(i,j) = MSAlg_morph (S,A,i,j) ) &
( for i,j,k be object of it, f,g be Function-yielding Function st
f in (the Arrows of it).(i,j) &
g in (the Arrows of it).(j,k) holds
(the Comp of it).(i,j,k).(g,f) = ( g ** f ) );
end;
definition let S, A;
cluster MSAlgCat (S,A) -> transitive associative with_units;
end;
theorem :: MSINST_1:6
for C be category st C = MSAlgCat (S,A)
for o be object of C holds
o is strict feasible MSAlgebra over S;
Back to top