Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Michal Muzalewski,
and
- Wojciech Skaba
- Received October 22, 1990
- MML identifier: RMOD_4
- [
Mizar article,
MML identifier index
]
environ
vocabulary FUNCSDOM, VECTSP_2, VECTSP_1, FINSEQ_1, FUNCT_1, FINSET_1,
RLVECT_1, RELAT_1, BOOLE, ARYTM_1, RLVECT_2, FUNCT_2, SEQ_1, FINSEQ_4,
RLSUB_1, CARD_1;
notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, XCMPLX_0, XREAL_0, FINSET_1,
FINSEQ_1, RELAT_1, FUNCT_1, FUNCT_2, FRAENKEL, NAT_1, CARD_1, STRUCT_0,
RLVECT_1, RLVECT_2, VECTSP_1, FINSEQ_4, FUNCSDOM, VECTSP_2, RMOD_2,
PRE_TOPC;
constructors REAL_1, NAT_1, RLVECT_2, RMOD_2, FINSEQ_4, PRE_TOPC, XREAL_0,
MEMBERED, PARTFUN1, XBOOLE_0;
clusters FUNCT_1, VECTSP_2, RLVECT_2, RELSET_1, STRUCT_0, PRE_TOPC, FINSET_1,
ARYTM_3, VECTSP_1, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements NUMERALS, REAL, BOOLE, SUBSET;
begin
reserve R for Ring,
V for RightMod of R,
a,b for Scalar of R,
x, y for set,
p,q,r for FinSequence,
i,k,n for Nat,
u,v,v1,v2,v3,w for Vector of V,
F,G,H for FinSequence of the carrier of V,
A,B for Subset of V,
f for Function of the carrier of V, the carrier of R,
S,T for finite Subset of V;
theorem :: RMOD_4:1
len F = len G &
(for k,v st k in dom F & v = G.k holds F.k = v * a) implies
Sum(F) = Sum(G) * a;
theorem :: RMOD_4:2
Sum(<*>(the carrier of V)) * a = 0.V;
theorem :: RMOD_4:3
Sum<* v,u *> * a = v * a + u * a;
theorem :: RMOD_4:4
Sum<* v,u,w *> * a = v * a + u * a + w * a;
definition let R; let V; let T;
canceled 2;
func Sum(T) -> Vector of V means
:: RMOD_4:def 3
ex F st rng F = T & F is one-to-one & it = Sum(F);
end;
theorem :: RMOD_4:5
Sum({}V) = 0.V;
theorem :: RMOD_4:6
Sum{v} = v;
theorem :: RMOD_4:7
v1 <> v2 implies Sum{v1,v2} = v1 + v2;
theorem :: RMOD_4:8
v1 <> v2 & v2 <> v3 & v1 <> v3 implies Sum{v1,v2,v3} = v1 + v2 + v3;
theorem :: RMOD_4:9
T misses S implies Sum(T \/ S) = Sum(T) + Sum(S);
theorem :: RMOD_4:10
Sum(T \/ S) = Sum(T) + Sum(S) - Sum(T /\ S);
theorem :: RMOD_4:11
Sum(T /\ S) = Sum(T) + Sum(S) - Sum(T \/ S);
theorem :: RMOD_4:12
Sum(T \ S) = Sum(T \/ S) - Sum(S);
theorem :: RMOD_4:13
Sum(T \ S) = Sum(T) - Sum(T /\ S);
theorem :: RMOD_4:14
Sum(T \+\ S) = Sum(T \/ S) - Sum(T /\ S);
theorem :: RMOD_4:15
Sum(T \+\ S) = Sum(T \ S) + Sum(S \ T);
definition let R; let V;
mode Linear_Combination of V ->
Element of Funcs(the carrier of V, the carrier of R) means
:: RMOD_4:def 4
ex T st for v st not v in T holds it.v = 0.R;
end;
reserve L,L1,L2,L3 for Linear_Combination of V;
definition let R; let V; let L;
func Carrier(L) -> finite Subset of V equals
:: RMOD_4:def 5
{v : L.v <> 0.R};
end;
canceled 3;
theorem :: RMOD_4:19
x in Carrier(L) iff ex v st x = v & L.v <> 0.R;
theorem :: RMOD_4:20
L.v = 0.R iff not v in Carrier(L);
definition let R; let V;
func ZeroLC(V) -> Linear_Combination of V means
:: RMOD_4:def 6
Carrier(it) = {};
end;
canceled;
theorem :: RMOD_4:22
ZeroLC(V).v = 0.R;
definition let R; let V; let A;
mode Linear_Combination of A -> Linear_Combination of V means
:: RMOD_4:def 7
Carrier(it) c= A;
end;
reserve l for Linear_Combination of A;
canceled 2;
theorem :: RMOD_4:25
A c= B implies l is Linear_Combination of B;
theorem :: RMOD_4:26
ZeroLC(V) is Linear_Combination of A;
theorem :: RMOD_4:27
for l being Linear_Combination of {}(the carrier of V) holds
l = ZeroLC(V);
theorem :: RMOD_4:28
L is Linear_Combination of Carrier(L);
definition let R; let V; let F; let f;
func f (#) F -> FinSequence of the carrier of V means
:: RMOD_4:def 8
len it = len F &
for i st i in dom it holds it.i = (F/.i) * f.(F/.i);
end;
canceled 3;
theorem :: RMOD_4:32
i in dom F & v = F.i implies (f (#) F).i = v * f.v;
theorem :: RMOD_4:33
f (#) <*>(the carrier of V) =
<*>(the carrier of V);
theorem :: RMOD_4:34
f (#) <* v *> = <* v * f.v *>;
theorem :: RMOD_4:35
f (#) <* v1,v2 *> = <* v1 * f.v1, v2 * f.v2 *>;
theorem :: RMOD_4:36
f (#) <* v1,v2,v3 *> = <* v1 * f.v1, v2 * f.v2, v3 * f.v3 *>;
theorem :: RMOD_4:37
f (#) (F ^ G) = (f (#) F) ^ (f (#) G);
definition let R; let V; let L;
func Sum(L) -> Vector of V means
:: RMOD_4:def 9
ex F st F is one-to-one & rng F = Carrier(L) & it = Sum(L (#) F);
end;
canceled 2;
theorem :: RMOD_4:40
0.R <> 1_ R implies (A <> {} & A is lineary-closed iff for l holds Sum
(l) in A);
theorem :: RMOD_4:41
Sum(ZeroLC(V)) = 0.V;
theorem :: RMOD_4:42
for l being Linear_Combination of {}(the carrier of V) holds
Sum(l) = 0.V;
theorem :: RMOD_4:43
for l being Linear_Combination of {v} holds
Sum(l) = v * l.v;
theorem :: RMOD_4:44
v1 <> v2 implies
for l being Linear_Combination of {v1,v2} holds Sum
(l) = v1 * l.v1 + v2 * l.v2;
theorem :: RMOD_4:45
Carrier(L) = {} implies Sum(L) = 0.V;
theorem :: RMOD_4:46
Carrier(L) = {v} implies Sum(L) = v * L.v;
theorem :: RMOD_4:47
Carrier(L) = {v1,v2} & v1 <> v2 implies Sum(L) = v1 * L.v1 + v2 * L.v2;
definition let R; let V; let L1,L2;
redefine pred L1 = L2 means
:: RMOD_4:def 10
for v holds L1.v = L2.v;
end;
definition let R; let V; let L1,L2;
func L1 + L2 -> Linear_Combination of V means
:: RMOD_4:def 11
for v holds it.v = L1.v + L2.v;
end;
canceled 3;
theorem :: RMOD_4:51
Carrier(L1 + L2) c= Carrier(L1) \/ Carrier(L2);
theorem :: RMOD_4:52
L1 is Linear_Combination of A & L2 is Linear_Combination of A implies
L1 + L2 is Linear_Combination of A;
theorem :: RMOD_4:53
for R being comRing
for V being RightMod of R
for L1, L2 being Linear_Combination of V holds
L1 + L2 = L2 + L1;
theorem :: RMOD_4:54
L1 + (L2 + L3) = L1 + L2 + L3;
theorem :: RMOD_4:55
for R being comRing
for V being RightMod of R
for L being Linear_Combination of V holds
L + ZeroLC(V) = L & ZeroLC(V) + L = L;
definition let R; let V,a; let L;
func L * a -> Linear_Combination of V means
:: RMOD_4:def 12
for v holds it.v = L.v * a;
end;
canceled 2;
theorem :: RMOD_4:58
Carrier(L * a) c= Carrier(L);
reserve R_ for domRing;
reserve V_ for RightMod of R_;
reserve L_ for Linear_Combination of V_;
reserve a_ for Scalar of R_;
reserve u_, v_ for Vector of V_;
theorem :: RMOD_4:59
a_ <> 0.R_ implies Carrier(L_ * a_) = Carrier(L_);
theorem :: RMOD_4:60
L * 0.R = ZeroLC(V);
theorem :: RMOD_4:61
L is Linear_Combination of A implies L * a is Linear_Combination of A;
theorem :: RMOD_4:62
L * (a + b) = L * a + L * b;
theorem :: RMOD_4:63
(L1 + L2) * a = L1 * a + L2 * a;
theorem :: RMOD_4:64
(L * b) * a = L * (b * a);
theorem :: RMOD_4:65
L * 1_ R = L;
definition let R; let V; let L;
func - L -> Linear_Combination of V equals
:: RMOD_4:def 13
L * (- 1_ R);
involutiveness;
end;
canceled;
theorem :: RMOD_4:67
(- L).v = - L.v;
theorem :: RMOD_4:68
L1 + L2 = ZeroLC(V) implies L2 = - L1;
theorem :: RMOD_4:69
Carrier(- L) = Carrier(L);
theorem :: RMOD_4:70
L is Linear_Combination of A implies - L is Linear_Combination of A;
definition let R; let V; let L1,L2;
func L1 - L2 -> Linear_Combination of V equals
:: RMOD_4:def 14
L1 + (- L2);
end;
canceled 2;
theorem :: RMOD_4:73
(L1 - L2).v = L1.v - L2.v;
theorem :: RMOD_4:74
Carrier(L1 - L2) c= Carrier(L1) \/ Carrier(L2);
theorem :: RMOD_4:75
L1 is Linear_Combination of A & L2 is Linear_Combination of A implies
L1 - L2 is Linear_Combination of A;
theorem :: RMOD_4:76
L - L = ZeroLC(V);
theorem :: RMOD_4:77
Sum(L1 + L2) = Sum(L1) + Sum(L2);
reserve R for domRing;
reserve V for RightMod of R;
reserve L,L1,L2 for Linear_Combination of V;
reserve a for Scalar of R;
theorem :: RMOD_4:78
Sum(L * a) = Sum(L) * a;
theorem :: RMOD_4:79
Sum(- L) = - Sum(L);
theorem :: RMOD_4:80
Sum(L1 - L2) = Sum(L1) - Sum(L2);
Back to top