environ vocabulary ORDINAL2, ARYTM, FINSEQ_1, ARYTM_3, ARYTM_1, RELAT_1, FUNCT_1, BOOLE, FINSEQ_2, GROUP_1, QC_LANG1, RLVECT_1, NEWTON, FINSEQ_4, CARD_3; notation TARSKI, XBOOLE_0, ORDINAL1, ORDINAL2, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, FUNCT_1, FINSEQ_1, FINSEQ_2, FINSEQ_4, NAT_1, RVSUM_1; constructors FINSEQOP, INT_1, REAL_1, NAT_1, RVSUM_1, FINSEQ_4, SEQ_1, MEMBERED, XBOOLE_0; clusters RELSET_1, FINSEQ_2, INT_1, XREAL_0, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve i,k,n,m,l for Nat; reserve s,t,r for natural number; reserve a,b,x,y for real number; reserve F,G,H for FinSequence of REAL; canceled 2; theorem :: NEWTON:3 for F,G being FinSequence st len F = len G & (for i st i in dom F holds F.i = G.i) holds F = G; canceled; theorem :: NEWTON:5 for n st n>=1 holds Seg n = {1} \/ {k: 1<k & k<n} \/ {n}; theorem :: NEWTON:6 for F holds len (a*F) = len F; theorem :: NEWTON:7 n in dom G iff n in dom (a*G); :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: x |^ n Function :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: definition let i be natural number; let x be real number; redefine func i |-> x -> FinSequence of REAL; end; definition let x be real number; let n be natural number; func x|^n equals :: NEWTON:def 1 Product(n |-> x); end; definition let x be real number; let n be natural number; cluster x|^n -> real; end; definition let x be Real; let n be natural number; redefine func x|^n -> Real; end; canceled; theorem :: NEWTON:9 for x holds x|^0 = 1; theorem :: NEWTON:10 for x holds x|^1 = x; theorem :: NEWTON:11 for s holds x|^(s+1) = x|^s*x; theorem :: NEWTON:12 (x*y)|^s = x|^s*y|^s; theorem :: NEWTON:13 x|^(s+t) = x|^s*x|^t; theorem :: NEWTON:14 (x|^s)|^t = x|^(s*t); theorem :: NEWTON:15 for s holds 1|^s = 1; theorem :: NEWTON:16 for s st s >=1 holds 0|^s = 0; :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: n! Function :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: definition let n be natural number; redefine func idseq n -> FinSequence of REAL; end; definition let n be natural number; func n! equals :: NEWTON:def 2 Product(idseq n); end; definition let n be natural number; cluster n! -> real; end; definition let n be natural number; redefine func n! -> Real; end; canceled; theorem :: NEWTON:18 0! = 1; theorem :: NEWTON:19 1! = 1; theorem :: NEWTON:20 2! = 2; theorem :: NEWTON:21 for s holds (s+1)! = (s!) * (s+1); theorem :: NEWTON:22 for s holds s! is Nat; theorem :: NEWTON:23 for s holds s!>0; canceled; theorem :: NEWTON:25 for s,t holds (s!) * (t!)<>0; :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: n choose k Function :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: definition let k,n be natural number; func n choose k means :: NEWTON:def 3 for l be natural number st l = n-k holds it = (n!)/((k!) * (l!)) if n >= k otherwise it = 0; end; definition let k,n be natural number; cluster n choose k -> real; end; definition let k,n be natural number; redefine func n choose k -> Real; end; canceled; theorem :: NEWTON:27 0 choose 0 = 1; canceled; theorem :: NEWTON:29 for s holds (s choose 0) = 1; theorem :: NEWTON:30 for s,t st s>=t holds (for r st r = s-t holds (s choose t) = (s choose r)); theorem :: NEWTON:31 for s holds s choose s = 1; theorem :: NEWTON:32 for s,t st s<t holds (((t+1) choose (s+1)) = (t choose (s+1)) + (t choose s) & ((t+1) choose (s+1)) = (t choose s) + (t choose (s+1))); theorem :: NEWTON:33 for s st s >= 1 holds s choose 1 = s; theorem :: NEWTON:34 for s,t st s>=1 & t = s-1 holds s choose t = s; theorem :: NEWTON:35 for s holds (for r holds (s choose r) is Nat); theorem :: NEWTON:36 for m,F st m <> 0 & len F = m & (for i,l st i in dom F & l = n+i-1 holds F.i = l choose n) holds Sum F = (n+m) choose (n+1); definition let a,b be real number; let n be natural number; func (a,b) In_Power n -> FinSequence of REAL means :: NEWTON:def 4 len it = n+1 & (for i,l,m being natural number st i in dom it & m = i - 1 & l = n-m holds it.i = (n choose m)* a|^l * b|^m); end; canceled; theorem :: NEWTON:38 (a,b) In_Power 0 = <*1*>; theorem :: NEWTON:39 ((a,b) In_Power s).1 = a|^s; theorem :: NEWTON:40 ((a,b) In_Power s).(s+1) = b|^s; theorem :: NEWTON:41 for s holds (a+b)|^s = Sum((a,b) In_Power s); definition let n be natural number; func Newton_Coeff n -> FinSequence of REAL means :: NEWTON:def 5 len it = n+1 & (for i,k be natural number st i in dom it & k = i-1 holds it.i = n choose k); end; canceled; theorem :: NEWTON:43 for s holds Newton_Coeff s = (1,1) In_Power s; theorem :: NEWTON:44 for s holds 2|^s = Sum(Newton_Coeff s);