environ vocabulary ANPROJ_2, INCSP_1, AFF_2; notation STRUCT_0, COLLSP, ANPROJ_2; constructors ANPROJ_2, XBOOLE_0; clusters ANPROJ_2, PROJDES1, ZFMISC_1, XBOOLE_0; begin reserve PCPP for CollProjectiveSpace, a,a',a1,a2,a3,b,b',b1,b2,c,c1,c3,d,d',e,o,p,p1,p2,p3,r,q, q1,q2,q3,x,y for Element of PCPP; canceled 2; theorem :: HESSENBE:3 a,b,c is_collinear implies b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear; theorem :: HESSENBE:4 a<>b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear; theorem :: HESSENBE:5 p<>q & a,b,p is_collinear & a,b,q is_collinear & p,q,r is_collinear implies a,b,r is_collinear; theorem :: HESSENBE:6 p<>q implies ex r st not p,q,r is_collinear; theorem :: HESSENBE:7 ex q,r st not p,q,r is_collinear; theorem :: HESSENBE:8 not a,b,c is_collinear & a,b,b' is_collinear & a<>b' implies not a,b',c is_collinear; theorem :: HESSENBE:9 not a,b,c is_collinear & a,b,d is_collinear & a,c,d is_collinear implies a=d; theorem :: HESSENBE:10 not o,a,d is_collinear & o,d,d' is_collinear & a,d,x is_collinear & d<>d' & a',d',x is_collinear & o,a,a' is_collinear & o<>a' implies x<>d; canceled; theorem :: HESSENBE:12 not a1,a2,a3 is_collinear & a1,a2,c3 is_collinear & a2,a3,c1 is_collinear & a1,a3,x is_collinear & c1,c3,x is_collinear & c3<>a1 & c3<>a2 & c1<>a2 & c1<>a3 implies a1<>x & a3<>x; theorem :: HESSENBE:13 not a,b,c is_collinear & a,b,d is_collinear & c,e,d is_collinear & e<>c & d<>a implies not e,a,c is_collinear; theorem :: HESSENBE:14 not p1,p2,q1 is_collinear & p1,p2,q2 is_collinear & q1,q2,q3 is_collinear & p1<>q2 & q2<>q3 implies not p2,p1,q3 is_collinear ; theorem :: HESSENBE:15 not p1,p2,q1 is_collinear & p1,p2,p3 is_collinear & q1,q2,p3 is_collinear & p3<>q2 & p2<>p3 implies not p3,p2,q2 is_collinear; theorem :: HESSENBE:16 not p1,p2,q1 is_collinear & p1,p2,p3 is_collinear & q1,q2,p1 is_collinear & p1<>p3 & p1<>q2 implies not p3,p1,q2 is_collinear; theorem :: HESSENBE:17 a1<>a2 & b1<>b2 & b1,b2,x is_collinear & b1,b2,y is_collinear & a1,a2,x is_collinear & a1,a2,y is_collinear & not a1,a2,b1 is_collinear implies x=y; canceled; theorem :: HESSENBE:19 not o,a1,a2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o<>b1 & o<>b2 implies not o,b1,b2 is_collinear; reserve PCPP for Pappian CollProjectivePlane, a,a1,a2,a3,b1,b2,b3,c1,c2,c3,o,p,p1,p2,p3,q,q', q1,q2,q3,r,r1,r2,r3,x,y,z for Element of PCPP; theorem :: HESSENBE:20 p2<>p3 & p1<>p3 & q2<>q3 & q1<>q2 & q1<>q3 & not p1,p2,q1 is_collinear & p1,p2,p3 is_collinear & q1,q2,q3 is_collinear & p1,q2,r3 is_collinear & q1,p2,r3 is_collinear & p1,q3,r2 is_collinear & p3,q1,r2 is_collinear & p2,q3,r1 is_collinear & p3,q2,r1 is_collinear implies r1,r2,r3 is_collinear; theorem :: HESSENBE:21 o<>b1 & a1<>b1 & o<>b2 & a2<>b2 & o<>b3 & a3<>b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear implies c1,c2,c3 is_collinear; definition cluster Pappian -> Desarguesian CollProjectiveSpace; end;