environ vocabulary ARYTM, BOOLE, SQUARE_1, RCOMP_1; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, REAL_1, SQUARE_1, RCOMP_1; constructors SQUARE_1, RCOMP_1, XCMPLX_0, MEMBERED; clusters XREAL_0, MEMBERED; requirements SUBSET, BOOLE; begin reserve s,g,h,r,p,p1,p2,q,q1,q2,x,y,z for real number; canceled; theorem :: RCOMP_2:2 y < x & z < x iff max(y,z) < x; definition let g,s be real number; func [. g,s .[ -> Subset of REAL equals :: RCOMP_2:def 1 { r where r is Real : g<=r & r<s }; func ]. g,s .] -> Subset of REAL equals :: RCOMP_2:def 2 { r where r is Real : g<r & r<=s }; end; theorem :: RCOMP_2:3 r in [.p,q.[ iff p<=r & r<q; theorem :: RCOMP_2:4 r in ].p,q.] iff p<r & r<=q; :: Note: r in [.p,q.] iff p<=r & r<=q by TOPREAL5:1 :: r in ].p,q.[ iff p<r & r<q by JORDAN6:45 theorem :: RCOMP_2:5 for g,s st g<s holds [.g,s.[ = ].g,s.[ \/ {g}; theorem :: RCOMP_2:6 for g,s st g<s holds ].g,s.] = ].g,s.[ \/ {s}; theorem :: RCOMP_2:7 [.g,g.[ = {}; theorem :: RCOMP_2:8 ].g,g.] = {}; theorem :: RCOMP_2:9 p <= g implies [.g,p.[ = {}; theorem :: RCOMP_2:10 p <= g implies ].g,p.] = {}; theorem :: RCOMP_2:11 g <= p & p<=h implies [.g,p.[ \/ [.p,h.[ = [.g,h.[; theorem :: RCOMP_2:12 g <= p & p<=h implies ].g,p.] \/ ].p,h.] = ].g,h.]; theorem :: RCOMP_2:13 g<=p1 & g<=p2 & p1<=h & p2<=h implies [.g,h.] = [.g,p1.[ \/ [.p1,p2.] \/ ].p2,h.]; theorem :: RCOMP_2:14 g<p1 & g<p2 & p1<h & p2<h implies ].g,h.[ = ].g,p1.] \/ ].p1,p2.[ \/ [.p2,h.[; theorem :: RCOMP_2:15 [.q1,q2.[ /\ [.p1,p2.[ = [.max(q1,p1),min(q2,p2).[; theorem :: RCOMP_2:16 ].q1,q2.] /\ ].p1,p2.] = ].max(q1,p1),min(q2,p2).]; theorem :: RCOMP_2:17 ].p,q.[ c= [.p,q.[ & ].p,q.[ c= ].p,q.] & [.p,q.[ c= [.p,q.] & ].p,q.] c= [.p,q.]; theorem :: RCOMP_2:18 r in [.p,g.[ & s in [.p,g.[ implies [.r,s.] c= [.p,g.[; theorem :: RCOMP_2:19 r in ].p,g.] & s in ].p,g.] implies [.r,s.] c= ].p,g.]; theorem :: RCOMP_2:20 p<=q & q<=r implies [.p,q.] \/ ].q,r.] = [.p,r.]; theorem :: RCOMP_2:21 p<=q & q<=r implies [.p,q.[ \/ [.q,r.] = [.p,r.]; theorem :: RCOMP_2:22 [.q1,q2.[ meets [.p1,p2.[ implies q2>=p1; theorem :: RCOMP_2:23 ].q1,q2.] meets ].p1,p2.] implies q2>=p1; theorem :: RCOMP_2:24 [.q1,q2.[ meets [.p1,p2.[ implies [.q1,q2.[ \/ [.p1,p2.[ = [.min(q1,p1),max(q2,p2).[; theorem :: RCOMP_2:25 ].q1,q2.] meets ].p1,p2.] implies ].q1,q2.] \/ ].p1,p2.] = ].min(q1,p1),max(q2,p2).]; theorem :: RCOMP_2:26 [.p1,p2.[ meets [.q1,q2.[ implies [.p1,p2.[ \ [.q1,q2.[ = [.p1,q1.[ \/ [.q2,p2.[; theorem :: RCOMP_2:27 ].p1,p2.] meets ].q1,q2.] implies ].p1,p2.] \ ].q1,q2.] = ].p1,q1.] \/ ].q2,p2.];