Journal of Formalized Mathematics
Volume 14, 2002
University of Bialystok
Copyright (c) 2002
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec,
and
- Yatsuka Nakamura
- Received September 16, 2002
- MML identifier: JORDAN16
- [
Mizar article,
MML identifier index
]
environ
vocabulary ARYTM, PRE_TOPC, SUBSET_1, COMPTS_1, BOOLE, RELAT_1, ORDINAL2,
FUNCT_1, RCOMP_1, ARYTM_1, PCOMPS_1, EUCLID, BORSUK_1, ARYTM_3, TOPMETR,
PSCOMP_1, JORDAN2C, SQUARE_1, JORDAN6, TOPREAL1, TOPS_2, TOPREAL2,
JORDAN3, JGRAPH_2, PARTFUN1, FCONT_1, CONNSP_2, SGRAPH1, REALSET1,
FINSET_1;
notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0,
XREAL_0, NAT_1, REAL_1, RELAT_1, FUNCT_1, PARTFUN1, FINSET_1, FUNCT_2,
FCONT_1, REALSET1, PRE_CIRC, STRUCT_0, PRE_TOPC, TOPS_2, COMPTS_1,
CONNSP_2, PCOMPS_1, RCOMP_1, TMAP_1, EUCLID, PSCOMP_1, TOPMETR, JORDAN2C,
JORDAN6, TOPREAL1, JORDAN5C, TOPREAL2, JORDAN7;
constructors REAL_1, DOMAIN_1, TOPS_2, RCOMP_1, JORDAN6, JORDAN5C, PSCOMP_1,
CONNSP_1, FCONT_1, TMAP_1, JORDAN7, PRE_CIRC, JORDAN2C, REALSET1,
JORDAN9, JORDAN1K;
clusters FUNCT_1, PRE_TOPC, STRUCT_0, XREAL_0, RELSET_1, EUCLID, TOPMETR,
JORDAN1B, BORSUK_1, SEQ_1, TEX_2, GROUP_2, MEMBERED, FUNCT_2;
requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM;
begin
theorem :: JORDAN16:1
for S1 being finite non empty Subset of REAL, e being Real st
for r being Real st r in S1 holds r < e
holds max S1 < e;
reserve C for Simple_closed_curve,
A,A1,A2 for Subset of TOP-REAL 2,
p,p1,p2,q,q1,q2 for Point of TOP-REAL 2,
n for Nat;
definition let n;
cluster trivial Subset of TOP-REAL n;
end;
theorem :: JORDAN16:2
for a,b,c,X being set st a in X & b in X & c in X
holds {a,b,c} c= X;
theorem :: JORDAN16:3
{}TOP-REAL n is Bounded;
theorem :: JORDAN16:4
Lower_Arc C <> Upper_Arc C;
theorem :: JORDAN16:5
Segment(A,p1,p2,q1,q2) c= A;
theorem :: JORDAN16:6
for T being non empty TopSpace,
A,B being Subset of T st A c= B
holds T|A is SubSpace of T|B;
theorem :: JORDAN16:7
A is_an_arc_of p1,p2 & q in A implies q in L_Segment(A,p1,p2,q);
theorem :: JORDAN16:8
A is_an_arc_of p1,p2 & q in A implies q in R_Segment(A,p1,p2,q);
theorem :: JORDAN16:9
A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2
implies q1 in Segment(A,p1,p2,q1,q2) & q2 in Segment(A,p1,p2,q1,q2);
theorem :: JORDAN16:10
Segment(p,q,C) c= C;
theorem :: JORDAN16:11
p in C & q in C implies LE p,q,C or LE q,p,C;
theorem :: JORDAN16:12
for X,Y being non empty TopSpace, Y0 being non empty SubSpace of Y,
f being map of X,Y,
g being map of X,Y0 st f = g & f is continuous
holds g is continuous;
theorem :: JORDAN16:13
for S,T being non empty TopSpace,
S0 being non empty SubSpace of S, T0 being non empty SubSpace of T,
f being map of S,T st f is_homeomorphism
for g being map of S0,T0 st g = f|S0 & g is onto
holds g is_homeomorphism;
theorem :: JORDAN16:14
for P1,P2,P3 being Subset of TOP-REAL 2
for p1,p2 being Point of TOP-REAL 2
st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P3 is_an_arc_of p1,p2
& P2 /\ P3={p1,p2} & P1 c= P2 \/ P3
holds P1=P2 or P1=P3;
theorem :: JORDAN16:15
for C being Simple_closed_curve,
A1,A2 being Subset of TOP-REAL 2,
p1,p2 being Point of TOP-REAL 2
st A1 is_an_arc_of p1,p2 & A2 is_an_arc_of p1,p2
& A1 c= C & A2 c= C & A1 <> A2
holds A1 \/ A2 = C & A1 /\ A2 = {p1,p2};
theorem :: JORDAN16:16
for A1,A2 being Subset of TOP-REAL 2,
p1,p2,q1,q2 being Point of TOP-REAL 2
st A1 is_an_arc_of p1,p2 & A1 /\ A2 = {q1,q2}
holds A1 <> A2;
theorem :: JORDAN16:17
for C being Simple_closed_curve,
A1,A2 being Subset of TOP-REAL 2,
p1,p2 being Point of TOP-REAL 2
st A1 is_an_arc_of p1,p2 & A2 is_an_arc_of p1,p2
& A1 c= C & A2 c= C & A1 /\ A2 = {p1,p2}
holds A1 \/ A2 = C;
theorem :: JORDAN16:18
A1 c= C & A2 c= C & A1 <> A2 &
A1 is_an_arc_of p1,p2 & A2 is_an_arc_of p1,p2
implies
for A st A is_an_arc_of p1,p2 & A c= C holds A = A1 or A = A2;
theorem :: JORDAN16:19
for C being Simple_closed_curve,
A being non empty Subset of TOP-REAL 2
st A is_an_arc_of W-min C, E-max C & A c= C
holds A = Lower_Arc C or A = Upper_Arc C;
theorem :: JORDAN16:20
A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2
implies ex g being map of I[01], (TOP-REAL 2)|A, s1, s2 being Real st
g is_homeomorphism & g.0 = p1 & g.1 = p2 & g.s1 = q1 & g.s2 = q2 &
0 <= s1 & s1 <= s2 & s2 <= 1;
theorem :: JORDAN16:21
A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 & q1 <> q2
implies ex g being map of I[01], (TOP-REAL 2)|A, s1, s2 being Real st
g is_homeomorphism & g.0 = p1 & g.1 = p2 & g.s1 = q1 & g.s2 = q2 &
0 <= s1 & s1 < s2 & s2 <= 1;
theorem :: JORDAN16:22
A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2
implies Segment(A,p1,p2,q1,q2) is non empty;
theorem :: JORDAN16:23
p in C implies
p in Segment(p,W-min C,C) & W-min C in Segment(p,W-min C,C);
definition let f be PartFunc of REAL, REAL;
attr f is continuous means
:: JORDAN16:def 1
f is_continuous_on dom f;
end;
definition let f be Function of REAL, REAL;
redefine attr f is continuous means
:: JORDAN16:def 2
f is_continuous_on REAL;
end;
definition let a,b be real number;
func AffineMap(a,b) -> Function of REAL, REAL means
:: JORDAN16:def 3
for x being real number holds it.x = a*x + b;
end;
definition let a,b be real number;
cluster AffineMap(a,b) -> continuous;
end;
definition
cluster continuous Function of REAL, REAL;
end;
theorem :: JORDAN16:24
for f,g being continuous PartFunc of REAL, REAL
holds g*f is continuous PartFunc of REAL, REAL;
theorem :: JORDAN16:25
for a,b being real number holds AffineMap(a,b).0 = b;
theorem :: JORDAN16:26
for a,b being real number holds AffineMap(a,b).1 = a+b;
theorem :: JORDAN16:27
for a,b being real number st a<> 0
holds AffineMap(a,b) is one-to-one;
theorem :: JORDAN16:28
for a,b,x,y being real number st a > 0 & x < y
holds AffineMap(a,b).x < AffineMap(a,b).y;
theorem :: JORDAN16:29
for a,b,x,y being real number st a < 0 & x < y
holds AffineMap(a,b).x > AffineMap(a,b).y;
theorem :: JORDAN16:30
for a,b,x,y being real number st a >= 0 & x <= y
holds AffineMap(a,b).x <= AffineMap(a,b).y;
theorem :: JORDAN16:31
for a,b,x,y being real number st a <= 0 & x <= y
holds AffineMap(a,b).x >= AffineMap(a,b).y;
theorem :: JORDAN16:32
for a,b being real number st a <> 0
holds rng AffineMap(a,b) = REAL;
theorem :: JORDAN16:33
for a,b being real number st a <> 0
holds AffineMap(a,b)" = AffineMap(a",-b/a);
theorem :: JORDAN16:34
for a,b being real number st a > 0
holds AffineMap(a,b).:[.0,1.] = [.b,a+b.];
theorem :: JORDAN16:35
for f being map of R^1, R^1
for a,b being Real st a <> 0 & f = AffineMap(a,b)
holds f is_homeomorphism;
theorem :: JORDAN16:36
A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 & q1 <> q2
implies Segment(A,p1,p2,q1,q2) is_an_arc_of q1,q2;
theorem :: JORDAN16:37
for p1,p2 being Point of TOP-REAL 2
for P being Subset of TOP-REAL 2 st P c= C
& P is_an_arc_of p1,p2 & W-min C in P & E-max C in P
holds Upper_Arc C c= P or Lower_Arc C c= P;
Back to top