Journal of Formalized Mathematics
Volume 1, 1989
University of Bialystok
Copyright (c) 1989
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Eugeniusz Kusak,
- Wojciech Leonczuk,
and
- Michal Muzalewski
- Received November 23, 1989
- MML identifier: ORTSP_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary VECTSP_1, BINOP_1, FUNCT_1, RELAT_1, SYMSP_1, RLVECT_1, ARYTM_1,
ORTSP_1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, FUNCT_1, FUNCT_2, DOMAIN_1,
BINOP_1, STRUCT_0, RLVECT_1, VECTSP_1, RELSET_1, SYMSP_1;
constructors DOMAIN_1, BINOP_1, SYMSP_1, MEMBERED, XBOOLE_0;
clusters SYMSP_1, STRUCT_0, RELSET_1, SUBSET_1, VECTSP_1, MEMBERED, ZFMISC_1,
XBOOLE_0;
requirements SUBSET, BOOLE;
begin
::
:: 1. ORTHOGONAL VECTOR SPACE STRUCTURE
::
reserve F for Field;
::
:: 2. ORTHOGONAL VECTOR SPACE
::
definition
let F;
let IT be Abelian add-associative right_zeroed right_complementable
(non empty SymStr over F);
canceled;
attr IT is OrtSp-like means
:: ORTSP_1:def 2
for a,b,c,d,x being Element of IT
for l being Element of F holds
(a<>0.IT & b<>0.IT &
c <>0.IT & d<>0.IT implies
( ex p being Element of IT
st not p _|_ a & not p _|_ b & not p _|_ c & not p _|_ d)) &
(a _|_ b implies l*a _|_ b) &
( b _|_ a & c _|_ a implies b+c _|_ a ) &
(not b _|_ a implies
( ex k being Element of F st x-k*b _|_ a )) &
( a _|_ b-c & b _|_ c-a implies c _|_ a-b );
end;
definition let F;
cluster OrtSp-like VectSp-like strict
(Abelian add-associative right_zeroed right_complementable
(non empty SymStr over F));
end;
definition let F;
mode OrtSp of F is OrtSp-like VectSp-like
(Abelian add-associative right_zeroed right_complementable
(non empty SymStr over F));
end;
reserve S for OrtSp of F;
reserve a,b,c,d,p,q,r,x,y,z for Element of S;
reserve k,l for Element of F;
canceled 10;
theorem :: ORTSP_1:11
0.S _|_ a;
theorem :: ORTSP_1:12
a _|_ b implies b _|_ a;
theorem :: ORTSP_1:13
not a _|_ b & c+a _|_ b implies not c _|_ b;
theorem :: ORTSP_1:14
not b _|_ a & c _|_ a implies not b+c _|_ a;
theorem :: ORTSP_1:15
not b _|_ a & not l=0.F implies not l*b _|_ a & not b _|_ l*a;
theorem :: ORTSP_1:16
a _|_ b implies -a _|_ b;
canceled 2;
theorem :: ORTSP_1:19
a-b _|_ d & a-c _|_ d implies b-c _|_ d;
theorem :: ORTSP_1:20
not b _|_ a & x-k*b _|_ a & x-l*b _|_ a implies k = l;
theorem :: ORTSP_1:21
a _|_ a & b _|_ b implies a+b _|_ a-b;
theorem :: ORTSP_1:22
(1_ F+1_ F <> 0.F & (ex a st a<>0.S)) implies (ex b st not b _|_ b);
::
:: 5. ORTHOGONAL PROJECTION
::
definition let F,S,a,b,x;
assume not b _|_ a;
canceled 3;
func ProJ(a,b,x) -> Element of F means
:: ORTSP_1:def 6
for l being Element of F st x-l*b _|_ a
holds it = l;
end;
canceled;
theorem :: ORTSP_1:24
not b _|_ a implies x-ProJ(a,b,x)*b _|_ a;
theorem :: ORTSP_1:25
not b _|_ a implies ProJ(a,b,l*x) = l*ProJ(a,b,x);
theorem :: ORTSP_1:26
not b _|_ a implies ProJ(a,b,x+y) = ProJ(a,b,x) + ProJ(a,b,y);
theorem :: ORTSP_1:27
not b _|_ a & l <> 0.F implies ProJ(a,l*b,x) = l"*ProJ(a,b,x);
theorem :: ORTSP_1:28
not b _|_ a & l <> 0.F implies ProJ(l*a,b,x) = ProJ(a,b,x);
theorem :: ORTSP_1:29
not b _|_ a & p _|_ a implies
ProJ(a,b+p,c) = ProJ(a,b,c) & ProJ(a,b,c+p) = ProJ(a,b,c);
theorem :: ORTSP_1:30
not b _|_ a & p _|_ b & p _|_ c implies ProJ(a+p,b,c) = ProJ(a,b,c);
theorem :: ORTSP_1:31
not b _|_ a & c-b _|_ a implies ProJ(a,b,c) = 1_ F;
theorem :: ORTSP_1:32
not b _|_ a implies ProJ(a,b,b) = 1_ F;
theorem :: ORTSP_1:33
not b _|_ a implies ( x _|_ a iff ProJ(a,b,x) = 0.F );
theorem :: ORTSP_1:34
not b _|_ a & not q _|_ a implies ProJ(a,b,p)*ProJ(a,b,q)" = ProJ(a,q,p);
theorem :: ORTSP_1:35
not b _|_ a & not c _|_ a implies ProJ(a,b,c) = ProJ(a,c,b)";
theorem :: ORTSP_1:36
not b _|_ a & b _|_ c+a implies ProJ(a,b,c) = -ProJ(c,b,a);
theorem :: ORTSP_1:37
not a _|_ b & not c _|_ b implies ProJ(c,b,a) = ProJ(b,a,c)"*ProJ(a,b,c);
theorem :: ORTSP_1:38
not p _|_ a & not p _|_ x & not q _|_ a & not q _|_ x implies
ProJ(a,q,p)*ProJ(p,a,x) = ProJ(q,a,x)*ProJ(x,q,p);
theorem :: ORTSP_1:39
not p _|_ a & not p _|_ x & not q _|_ a & not q _|_ x & not b _|_ a
implies
ProJ(a,b,p)*ProJ(p,a,x)*ProJ(x,p,y) = ProJ(a,b,q)*ProJ(q,a,x)*ProJ(x,q,y);
theorem :: ORTSP_1:40
not a _|_ p & not x _|_ p & not y _|_ p implies
ProJ(p,a,x)*ProJ(x,p,y) = ProJ(p,a,y)*ProJ(y,p,x);
::
:: 6. BILINEAR SYMMETRIC FORM
::
definition let F,S,x,y,a,b;
assume not b _|_ a;
func PProJ(a,b,x,y) -> Element of F means
:: ORTSP_1:def 7
for q st not q _|_ a & not q _|_ x holds
it = ProJ(a,b,q)*ProJ(q,a,x)*ProJ(x,q,y)
if ex p st (not p _|_ a & not p _|_ x) ,
it = 0.F if for p holds p _|_ a or p _|_ x;
end;
canceled 2;
theorem :: ORTSP_1:43
not b _|_ a & x = 0.S implies PProJ(a,b,x,y) = 0.F;
theorem :: ORTSP_1:44
not b _|_ a implies (PProJ(a,b,x,y) = 0.F iff y _|_ x);
theorem :: ORTSP_1:45
not b _|_ a implies PProJ(a,b,x,y) = PProJ(a,b,y,x);
theorem :: ORTSP_1:46
not b _|_ a implies PProJ(a,b,x,l*y) = l*PProJ(a,b,x,y);
theorem :: ORTSP_1:47
not b _|_ a implies PProJ(a,b,x,y+z) = PProJ(a,b,x,y) + PProJ(a,b,x,z);
Back to top